

Welcome to TRANSIT’s documentation!

[image: GitHub last tag]
 [https://github.com/mad-lab/transit]This page contains the documentation for TRANSIT. Below are a few quick links to some of the most important sections of the documentation, followed by a brief overview of TRANSIT’s features.

Quick Links

	Installation

	TRANSIT Manual

	tutorial-link

	TPP Manual

	Code Documentation

Features

TRANSIT offers a variety of features including:

	More than 8 analysis methods, including methods for determining conditional essentiality as well as genetic interactions.

	Ability to analyze himar1 or tn5 transposons datasets.

	TrackView to help visualize read-counts accross the genome.

	Can export datasets into a variety of formats, including IGV.

	Includes a variety of normalization methods.

	Quality Control diagnostics, to idenfity poor quality datasets.

	Ability to install as a python package, to import and use in your own personal scripts.

TRANSIT Manual

	TRANSIT Overview
	Developers

	References

	Installation
	Requirements

	Python 2.7:

	Python 3:

	Use as a Python Package

	Optional: Install BWA to use with TPP pre-processor

	Upgrading

	Installing wxPython

	Troubleshooting

	Running TRANSIT
	GUI Mode

	Command line Mode

	Prot_tables (Annotations)

	Tn5 Datasets

	Quality Control
	QC Metrics Table

	QC Plots

	Interpretation of Data Quality

	Beta-Geometric Correction

	Analysis Methods
	Gumbel

	griffin

	Tn5Gaps

	HMM

	Resampling

	Mann-Whitney U-test (utest)

	Genetic Interactions

	ANOVA

	ZINB

	Normalization

	Pathway Enrichment Analysis

	tnseq_stats

	corrplot

	heatmap

	Console Mode Cheat-Sheet
	Analysis Methods

	Normalizing datasets

TRANSIT Tutorials

	Tutorial: Genetic Interactions Analysis
	Console Mode Tutorial

	GUI Mode Tutorial

	Tutorial: Normalize datasets
	Adding the annotation file

	Add .wig datasets

	Normalize and Save

	Normalization

	Tutorial: Export datasets
	Adding the annotation file

	Add .wig datasets

	Export to IGV

TPP Manual

	TPP Overview

	Installation

	Running TPP

	Mapping to Genomes with Multiple Contigs

	Overview of Data Processing Procedure

	Statistics

Code Documentation

	transit package
	Submodules

	pytransit.norm_tools module

	pytransit.stat_tools module

	pytransit.tnseq_tools module

	pytransit.transit_tools module

	Module contents

	Index

	Module Index

	Search Page

Support

For any questions or comments, please contact Dr. Thomas Ioerger, ioerger@cs.tamu.edu.

TRANSIT Overview

	This is a software that can be used to analyze Tn-Seq datasets. It includes various statistical calculations of essentiality of genes or genomic regions (including conditional essentiality between 2 conditions). These methods were developed and tested as a collaboration between the Sassetti lab (UMass) and the Ioerger lab (Texas A&M) [DeJesus2015TRANSIT].

[image: _images/transit_interface.png]

	TRANSIT is capable of analyzing TnSeq libraries constructed with Himar1 or Tn5 datasets.

	TRANSIT assumes you have already done pre-processing of raw sequencing files (.fastq) and extracted read counts into a .wig formatted file [http://genome.ucsc.edu/goldenpath/help/wiggle.html]. The .wig file should contain the counts at all sites where an insertion could take place (including sites with no reads). For Himar1 datasets this is all TA sites in the genome. For Tn5 datasets this would be all nucleotides in the genome.

	Note that while refer to “read-counts” throughout the documentation, the current Himar1 protocol [http://www.springer.com/biomed/human+genetics/book/978-1-4939-2397-7] utilizes internal barcodes that can be used to reduce raw read counts to unique template counts, and this this is the intended input to TRANSIT from Himar1 datasets.

	There are various methods available for pre-processing (converting .fastq files to .wig files). You might have your own scripts (if so, massage the data into .wig format), or you might get the scripts used in the Sassetti lab. For convenience, we are including a separate tool called TPP [http://saclab.tamu.edu/tom/TPP.html] (Tn-Seq Pre-Processor) with this distribution that encodes the way we process .fastq files in the Ioerger lab. It’s a complicated process with many steps (removing transposon prefixes of reads, mapping into genome, identifying barcodes and reducing read counts to template counts).

	Most of the analysis methods in TRANSIT require an annotation to know the gene coordinates and names. This is the top file input in the GUI window. The annotation has to be in a somewhat non-standard format called a “.prot_table”. If you know what you are doing, it is easy to convert annotations for other organisms into .prot_table format. But for convenience, we are distributing the prot_tables for 3 common versions of the H37Rv genome: H37Rv.prot_table (NC_000962.2, from Stewart Cole), H37RvMA2.prot_table (sequenced version from the Sassetti lab), and H37RvBD.prot_table (sequenced by the Broad Institute). All of these are slightly different, and it is critical that you use the same annotation file as the reference genome sequence used for mapping the reads (during pre-processing).

	There are three main types of essentiality analyses: individual,
comparative (pairwise), and multi-condition.

	In individual analysis, the goal is to distinguish essential vs. non-essential in a single growth condition, and to assess the statistical significance of these calls. Two methods for this are the Gumbel method and the HMM. They are computationally distinct. The Gumbel method is looking for significant stretches of TA sites lacking insertions, whereas the HMM looks for regions where the mean read count is locally suppressed or increased. The HMM can detect ‘growth-advantaged’ and ‘growth-defect’ regions. The HMM is also a bit more robust on low-density datasets (with insertion density as low as 20-30%). But both methods have their merits and are complementary.

	For comparative analysis, the goal is to determine if the sum of read counts differs significantly between two conditions, for which TRANSIT uses resampling (a non-parameteric test analogous to a permutation test). Hence this can be used to identify conditionally essential regions and quantify the statistical significance. A rank-based Mann-Whitney U-test is also available.

	For multi-condition analysis, there are two methods for determining whether insertion counts in a gene vary significantly across conditions: ZINB (Zero-Inflated Negative Binomial) regression, and ANOVA. In general, we find that ZINB finds more (and better) hits than ANOVA (and even out-performs resampling, for cases with 2 conditions). Futhermore, ZINB can incorporate additional covariates.

	TRANSIT has been designed to handle multiple replicates. If you have two or more replicate dataset of the same library selected in the same condition, you can provide them, and more of the computational methods will do something reasonable with them.

	For those methods that generate p-values, we often also calculate adjusted p-value (or ‘q-values’) which are corrected for multiple tests typically the Benjamini-Hochberg procedure. A typical threshold for significance would be q<0.05 (not p<0.05).

	It is important to understand the GUI model that TRANSIT uses It allows you to load up datasets (.wig files), select them, choose an analysis method, set parameters, and start the computation. It will generate output files in your local directory with the results. These files can then be loaded into the interface and browser with custom displays and graphs. The interface has 3 main windows or sections: ‘Control Samples’, ‘Experimental Samples’, ‘Results Files.’ The first two are for loading input files (‘Control Samples’ would be like replicate datasets from a reference condition, like in vitro, rich media, etc.; ‘Experimental Samples’ would be where you would load replicates for a comparative conditions, like in vivo, or minimal media, or low-iron, etc.) The ‘Results Files’ section is initially empty, but after a computation finishes, it will automatically be populated with the corresponding output file. See the ‘Tutorial’ section below in this documentation for an illustration of the overall process for a typical work-flow.

	TRANSIT incorporates many interesting ways of looking at your data.

	Track view shows you a visual representation of the read counts at each site at a locus of interest (for selected datasets) somewhat like IGV.

[image: _images/transit_dataset_track_view.png]

	Scatter plots can show the correlation of counts between 2 datasets.

[image: _images/transit_dataset_scatter_graph.png]

+ Volcano plots can be used to visualize the results of resampling and assess the distribution between over- and under-represented genes in condition B vs. condition A. In addition you can look at histogram of the resampling distributions for each gene.

[image: _images/transit_result_volcano_graph.png]
[image: _images/transit_resampling_histogram_graph.png]

	Most of the methods take a few minutes to run. (it depends on parameters, CPU clock speed, etc., but the point is, a) these calculations are complex and not instaneous, but b) we have tried to implement it so that they don’t take hours)

	Note: in this version of TRANSIT, most of the methods are oriented toward gene-level analysis. There are methods for analyzing essentiality of arbitrary genomic regions (e.g. sliding windows, HMMs…). We plan to incorporate some of these in future versions.

Developers

	Name

	Time Active

	Contact Information

	Thomas R. Ioerger

	2015-Present

	http://faculty.cs.tamu.edu/ioerger/

	Michael A. DeJesus

	2015-2018

	http://mad-lab.org

	Chaitra Ambadipudi

	2015

	

	Eric Nelson

	2016

	

	Siddharth Subramaniyam

	2018

	

References

If you use TRANSIT, please cite the following reference:

	DeJesus2015TRANSIT

	DeJesus, M.A., Ambadipudi, C., Baker, R., Sassetti, C., and Ioerger, T.R. (2015). TRANSIT - a Software Tool for Himar1 TnSeq Analysis. PLOS Computational Biology, 11(10):e1004401 [http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004401]

Development of TRANSIT is funded by the National Institutes of Health (www.nih.gov/) grant U19 AI107774.

Other references, including methods utilized by TRANSIT:

	DeJesus2013

	DeJesus, M.A., Zhang, Y.J., Sassettti, C.M., Rubin, E.J.,
Sacchettini, J.C., and Ioerger, T.R. (2013). Bayesian analysis of gene essentiality based on sequencing of transposon insertion libraries. Bioinformatics, 29(6):695-703. [http://www.ncbi.nlm.nih.gov/pubmed/23361328]

	DeJesus2013HMM

	DeJesus, M.A., Ioerger, T.R. A Hidden Markov Model for identifying essential and growth-defect regions in bacterial genomes from transposon insertion sequencing data. BMC Bioinformatics. 2013. 14:303 [http://www.ncbi.nlm.nih.gov/pubmed/24103077]

	DeJesus2014

	DeJesus, M.A. and Ioerger, T.R. (2014). Capturing uncertainty by modeling local transposon insertion frequencies improves discrimination of essential genes. IEEE Transactions on Computational Biology and Bioinformatics, 12(1):92-102. [http://www.ncbi.nlm.nih.gov/pubmed/26357081]

	DeJesus2016

	DeJesus, M.A. and Ioerger, T.R. (2016). Normalization of transposon-mutant library sequencing datasets to improve identification of conditionally essential genes. Journal of Bioinformatics and Computational Biology, 14(3):1642004 [http://www.ncbi.nlm.nih.gov/pubmed/26932272]

	DeJesus2017NAR

	DeJesus, M.A., Nambi, S., Smith, C.M., Baker, R.E., Sassetti, C.M., Ioerger, T.R. Statistical analysis of genetic interactions in Tn-Seq data. Nucleic Acids Research. 2017. 45(11):e93. doi: 10.1093/nar/gkx128. [https://www.ncbi.nlm.nih.gov/pubmed/28334803]

	ZINB

	Subramaniyam S, DeJesus MA, Zaveri A, Smith CM, Baker RE, Ehrt S, Schnappinger D, Sassetti CM, Ioerger TR. (2019). Statistical analysis of variability in TnSeq data across conditions using Zero-Inflated Negative Binomial regression. *BMC Bioinformatics*. 2019 Nov 21;20(1):603. doi: 10.1186/s12859-019-3156-z. [https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-019-3156-z]

Installation

TRANSIT can be downloaded from the public GitHub server,
http://github.com/mad-lab/transit. It is released under a GPL
License. An archive with the lastest version fo the source code can be downloaded at the following link:

Source code.zip [https://github.com/mad-lab/transit/archive/master.zip]

If you know how to utilize git, you can clone the git respository as follows:

git clone https://github.com/mad-lab/transit/

TRANSIT is python-based You must have python installed (installed by
default on most systems). In addition, TRANSIT relies on some python
packages/libraries/modules that you might need to install (see Requirements).

If you encounter problems, please contact us or head to the Troubleshooting section.

Requirements

TRANSIT runs on both python2.7 and python3. But the dependencies vary slightly.

Python 2.7:

The following libraries/modules are required to run TRANSIT:

	Python 2.7 [http://www.python.org]

	Numpy [http://www.numpy.org/] (tested on 1.15.0)

	Statsmodels [https://pypi.org/project/statsmodels/] (tested on 0.9.0)

	Scipy [http://www.scipy.org/] (tested on 1.1)

	matplotlib [http://matplotlib.org/users/installing.html] (tested on 2.2)

	Pillow 5.0 [https://github.com/python-pillow/Pillow]

	wxpython 4+ [http://www.wxpython.org/]

	PyPubSub 3.3 [https://pypi.org/project/PyPubSub/] (Version 4.0 does not support python2 Github Issue [https://github.com/schollii/pypubsub/issues/9])

All of these dependencies can be installed using the following command.

pip install numpy scipy pillow "pypubsub<4.0" "matplotlib<3.0" statsmodels wxPython

Pip and Python are usually preinstalled in most modern operating systems.

Python 3:

The following libraries/modules are required to run TRANSIT:

	Python 3+ [http://www.python.org]

	Numpy [http://www.numpy.org/] (tested on 1.16.0)

	Statsmodels [https://pypi.org/project/statsmodels/] (tested on 0.9.0)

	Scipy [http://www.scipy.org/] (tested on 1.2)

	matplotlib [http://matplotlib.org/users/installing.html] (tested on 3.0)

	Pillow 6.0 [https://github.com/python-pillow/Pillow]

	wxpython 4+ [http://www.wxpython.org/]

	PyPubSub 4+ [https://pypi.org/project/PyPubSub/] (tested on 4.0.3)

All of these dependencies can be installed using the following command.

pip3 install numpy scipy pillow pypubsub matplotlib statsmodels wxPython

Pip and Python are usually preinstalled in most modern operating systems.

Additional Requirements: R (statistical analysis package)

R is called by Transit for certain commands, such as ZINB, corrplot, and heatmap.
As of now, installing R is optional, and requires these additional steps…

Additional Installation Requirements for R:

	install R [https://www.r-project.org/] (tested on v3.5.2)

	R packages: MASS, pscl, corrplot, gplots (run “install.packages(MASS)” etc. in R console)

	Python packages (for python3): rpy2 (v>=3.0) (run “pip3 install rpy2” on command line)

	Python packages (for python2.7): rpy2 (v<2.9.0) (run “pip install ‘rpy2<2.9.0’ ” on command line)

Use as a Python Package

TRANSIT can be (optionally) installed as a python package. This can simplify the installation process as it will automatically install most of the requirements. In addition, it will allow users to use some of transit functions in their own scripts if they desire. Below is a brief example of importing transit functions into python. In this example, pair of .wig files are parsed into their read-counts (data) and genomic positions (position), and then normalization factors are calculated. See the documentation of the package for further examples:

>>> import pytransit.norm_tools as norm_tools
>>> import pytransit.tnseq_tools as tnseq_tools
>>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
>>> print(data)
array([[0., 0., 0., ..., 0., 0., 0.],
 [0., 0., 0., ..., 0., 0., 0.]])
>>> factors = norm_tools.TTR_factors(data)
>>> print(factors)
array([[1.],
 [0.62862886]])

You can use pip to install the TRANSIT package.

sudo pip install tnseq-transit

This will automatically download and install TRANSIT as a package, and all remaining required python packages. Once TRANSIT is installed as a package, it can be executed as

Note

If you will be using the pre-processor, TPP, you will also need to install install BWA.

Note

The Transit package does not install wxPython. For graphical interface usage, this has to be done by the user. See install wxPython

Optional: Install BWA to use with TPP pre-processor

If you will be using the pre-processor, TPP, you will also need to install BWA [http://bio-bwa.sourceforge.net/].

Linux & OSX Instructions

Download the source files:

	http://sourceforge.net/projects/bio-bwa/files/

Extract the files:

tar -xvjf bwa-0.7.12.tar.bz2

Go to the directory with the extracted source-code, and run make to create the executable files:

cd bwa-0.7.12
make

Windows Instructions

For Windows, we provide a windows executable (.exe) for Windows 64 bit:

	bwa-0.7.12_windows.zip [http://saclab.tamu.edu/essentiality/transit/bwa-0.7.12_windows.zip]

The 32-bit version of Windows is not recommended as it is limited in the amount of system memory that can be used.

Upgrading

The process of upgrading transit will depend on how you installed transit initially.

Method 1: Upgrading package installation

If you installed TRANSIT as a package, then to upgrade, simply use pip to install tnseq-transit again, but this time include the ‘–upgrade’ flag. For example:

sudo pip install tnseq-transit --upgrade

This will automatically download and install the latest version of TRANSIT, as well as upgrade any of its requirements if necessary for compatability.

Method 2: Upgrading source installation

If you installed TRANSIT by downloading the raw source, then you can upgrade TRANSIT simply by replacing the old source code with the latest version. You can obtain a .zip archive with the latest version of the source through the following link:

https://github.com/mad-lab/transit/archive/master.zip

Simply exctract the code, and replace your existing files or delete the directory with the old source doe and use the newest version.

Note

If an an older version of wxPython is already installed (< 4.0), you may have to remove it and install version 4.0+.

Installing wxPython

wxPython 4+ can be installed using pip

pip install wxPython

If the above command fails and you already have wxPython < 4.0 installed, you may have to manually remove it.
See https://stackoverflow.com/questions/50688630/cannot-uninstall-wxpython-3-0-2-0-macos for details.

Troubleshooting

1. No window appears when running in GUI mode.

This problem is likely due to running OSX and previously unsuported versions of matplotlib.
Please upgrade matplotlib to the latest version using:

pip install 'matplotlib' --upgrade

2. pip: SystemError: Cannot compile ‘Python.h’.

This occurs when you do not have the development libraries for python. You can fix this by installing the python-dev packages:

sudo apt-get install python-dev

3. pip: “The following required packages can not be built: freetype,png,” etc.

This occurs when you do not have some dependencies that are necessary to build some of the python modules TRANSIT requires (usually matplotlib). Installing the following linux dependencies should fix this:

sudo apt-get install libpng-dev libjpeg8-dev libfreetype6-dev

4. pip: “No lapack/blas resources found”

This occurs when you do not have some dependencies that are necessary to build some of the python modules TRANSIT requires (usually numpy/scipy). Installing the following linux dependencies should fix this:

sudo apt-get install libblas-dev liblapack-dev libatlas-base-dev gfortran

5. “resources.ContextualVersionConflict (six 1.5.2)…”

This occurs some of the python modules are out of date. You can use pip to upgrade them as follows:

sudo pip install six --upgrade

Running TRANSIT

TRANSIT can be run in either GUI mode or in console mode. GUI Mode
will be run if TRANSIT is not given any command-line arguments. If any
arguments are given, TRANSIT will run in console-mode.

The exact commands will vary depending on the method of
installation. Details are given below:

GUI Mode

In general, if you installed TRANSIT as a python package (e.g. using
pip install tnseq-transit), then the proper way to run TRANSIT in
GUI mode is simply to type the following into a console:

transit

Note

In windows, you will likely have to navigate to C:\Python2.7\Scripts to be able to recognize the transit.exe file.

If, however, you installed transit by downloading and extracting the source-code archive, you can run TRANSIT in GUI mode by typing in the command line:

python PATH/src/transit.py

where PATH is the path to the TRANSIT installation directory. You might be able to double-click on icon for transit.py, if your OS associates .py files with python and automatically runs them.

Note

Note, because TRANSIT has a graphical user interface, if you are trying to run TRANSIT in GUI mode across a network, for example by running on a unix server but displaying on a desktop machine, you will probably need to use ‘ssh -Y’ and a local X11 client (like Xming or Cygwin/X on PCs). This will allow the GUI component to be properly displayed accross the network connection.

Command line Mode

TRANSIT can also be run purely the command line, without a GUI interface. This is convenient if you want to run many analyses in batch, as you can write a script that automatically runs several analyses in parallel or in sequence

If you installed TRANSIT as a python package, you can get a list of possible arguments by typing:

transit -h

Or if you installed it by downloading and extracting an archive with the source code:

python PATH/src/transit.py -h

In most cases TRANSIT expects the user to specify which analysis method they wish to run as their first argument. The user will need to type the short-name of the analysis method desired, e.g. “gumbel”, “hmm”, or “resampling”. By choosing a method, and adding the “-h” flag, you will get a list of all the necessary parameters and optional flags for the chosen method.

If you installed TRANSIT as a python package, you can achieve this by typing:

transit gumbel -h

Or if you installed it by downloading and extracting an archive with the source code:

python PATH/src/transit.py gumbel -h

See example usages of supported methods in Analysis Methods section.

Prot_tables (Annotations)

Most of the methods in Transit use a custom format for genome annotations called a ‘.prot_table’.
It is a simple tab-separated text file with specific columns, as originally defined for genomes
in Genbank many years ago.

The required columns are:

	gene function description

	start coordinate

	end coordinate

	strand

	length of protein product (in amino acids)

	don’t care

	don’t care

	gene name (like “dnaA”)

	ORF id (like Rv0001)

It is crucial to use the same .prot_table corresponding to the genome sequence that was
used to generate the wig file (count insertions) by TPP. This is because the
coordinates of TA sites in the wig file and the coordinates of ORF boundaries
must use the same coordinate system (which can be thrown out of register by indels).

Suppose you have a .prot_table for genome A, and you want to map reads to
another genome B which is closely related, but for which you do not have an annotation.
You can use the following web-app (Prot_table Adjustment Tool [http://saclab.tamu.edu/cgi-bin/iutils/app.cgi])
to convert the annotation for A to B
by adjusting all the coordinates of ORFs from A to B according to a genome alignment.
For example, you could use this to map known ORFs in H37Rv to sequences of other strains, like HN878 or CDC1551.
(Even though they have their own annotations, it might be helpful to use the genes as defined in H37Rv)

While some Transit methods can also work with .gff (or .gff3) files,
the flexibility of the .gff format makes it difficult to anticipate all possible encoding schemes.
Therefore, to simplify things, we recommend you convert your .gff file to .prot_table format
once at the beginning and then use that for all work with Transit,
which can be done through the GUI (under ‘Convert’ in menu), or on the command-line as follows:

> python transit.py convert gff_to_prot_table <.gff> <.prot_table>

Tn5 Datasets

Transit can now process and analyze Tn5 datasets This is a different transposon than Himar1.
The major difference is Tn5 can insert at any site in the genome, and is not restricted
to TA dinucleotides (and saturation is typically much lower). This affects
the statistical analyses (which were originally designed for Himar1 and can’t directly
be applied to Tn5). Therefore, Resampling was extended to handle Tn5 for comparative analysis, and
Tn5Gaps is a new statistical model for identifying essential genes in single Tn5 datasets.
Amplification of Tn5 libraries
uses different primers, and this affects the pre-processing by TPP. But TPP has
be modified to recognize the primer sequence for the most widely
used protocol for Tn5. Furthermore, TPP now has an option for users to define their
own primer sequences, if they use a different sample prep protocol.

Quality Control

TRANSIT has several useful features to help inspect the quality of datasets as
and export them to different formats. (see also TPP Statistics)

As you add datasets to the control or experimental sections, TRANSIT
automatically provides some metrics like density, average, read-counts and
max read-count to give you an idea of how the quality of the dataset.

However, TRANSIT provides more in-depth statistics in the Quality Control
window. To use this feature, add the annotation file for your organism
(in .prot_table or GFF3 format). Next, add and highlight/select the desired
read-count datasets in .wig format. Finally, click on View -> Quality Control.
This will open up a new window containing a table of metrics for the datasets
as well as figures corresponding to whatever dataset is currently highlighted.

[image: _images/transit_quality_control_window.png]

QC Metrics Table

The Quality Control window contains a table of the datasets and metrics, similar
to the one in the main TRANSIT interface. This table has an extended set of
metrics to provide a better picture of the quality of the datasets:

	Column Header

	Column Definition

	Comments

	File

	Name of dataset file.

	

	Density

	Fraction of sites with insertions.

	“Well saturated” Himar1 datasets have >30% saturation. Beneath this, statistical methods may have trouble.

	Mean Read

	Average read-count, including empty sites.

	

	NZMean Read

	Average read-count, excluding empty sites.

	A value between 30-200 is usually good for Himar1 datasets. Too high or too low can indicate problems.

	NZMedian Read

	Median read-count, excluding empty sites.

	As read-counts can often have spikes, median serves as a good robust estimate.

	Max Read

	Largest read-count in the dataset.

	Useful to determine whether there are outliers/spikes, which may indicate sequencing issues.

	Total Reads

	Sum of total read-counts in the dataset.

	Indicates how much sequencing material was obtained. Typically >1M reads is desired for Himar1 datasets.

	Skew

	Skew of read-counts in the dataset.

	Large skew may indicate issues with a dataset. Typically a skew < 50 is desired. May be higher when
library is under strong selection

	Kurtosis

	Kurtosis of the read-counts in the dataset.

	

QC Plots

The Quality Control window also contains several plots that are helpful to
visualize the quality of the datasets. These plots are unique to the dataset
selected in the Metrics Table (below the figures). They will update depending
on which row in the Metrics Table is selected:

Figure 1: Read-Count Distribution

[image: _images/transit_quality_control_histogram.png]
The first plot in the Quality Control window is a histogram of the non-zero read-counts in the selected dataset. While read-counts are not truly geometrically distributed, “well-behaved” datasets often look “Geometric-like”, i.e. low counts are more frequent than very large counts. Datasets which where this is not the case may reflect a problem.

Figure 2: QQ-Plot of Read-Counts vs Geometric Distribution

[image: _images/transit_quality_control_qqplot.png]
The second plot in the Quality Control window is a quantile-quantile plot (“QQ plot”) of the non-zero read-counts in the selected dataset, versus a theoretical geometric distribution fit on these read-counts. While read-counts are not truly geometrically distributed, the geometric distribution (a special case of the Negative Binomial distribution), can serve as a quick comparison to see how well-behaved the datasets are.

As the read-counts are not truly geometric, some curvature in the QQplot is expected. However, if the plot curves strongly from the identity line (y=x) then the read-counts may be highly skewed. In this case, using the “betageom” normalization option when doing statistical analyses may be a good idea as it is helpful in correcting the skew.

Figure 3: Ranked plot of Read-Counts

[image: _images/transit_quality_control_ranked.png]
The second plot in the Quality Control window is a plot of the read-counts in sorted order. This may be helpful in indentifying outliers that may exist in the dataset. Typically, some large counts are expected and some normalization methods, like TTR, are robust to such outliers. However, too many outliers, or one single outlier that is overhwelmingly different than the rest may indicate an issue like PCR amplification (especially in libraries constructed older protocols).

Interpretation of Data Quality

It is important to be able to evaluate the quality of datasets.
In a nutshell, we look at statistics like saturation, and mean read count,
but also things like max count and skewness.

There are two ways to do QC in Transit - via the GUI and command-line.
In the GUI, one can load a set of
wig files a select “View->Quality Control” in the menu; this will
display some plots of read-count distribution. Ideally, you want most of
your datasets to fall along the diagonal on a QQ-plot. Real data will
often deviate somewhat (I will try to be more quantitative about this in the future),
but if a dataset skews far off from the diagonal, it could cause problems
with analytical methods like resampling or the HMM.

[image: _images/QC_example.png]
You can also generate the same table to statistics as on the QC panel
from the command-line using the tnseq_stats command.

Below the plots are a table of statistics. While there are not
rigorous criteria for defining “bad” datasets, rules of thumb I use
for “good” datasets are: density>30% (ideally >50%) and NZmean>10 (ideally >50).
In addition, I look
at MaxReadCount and Skewness as indicators. Typically, MaxReadCount
will be in the range of a few thousand to tens-of-thousands.
If you see individual sites with
counts in the range of 105-106 , it might mean you have some positive
selection at a site (e.g. biological, or due to PCR jackpotting), and
this can have the effect of reducing counts and influencing the
distribution at all the other sites. If MaxReadCount<100, that is also
probably problematic (either not enough reads, or possibly skewing).
Also, skewness>30 often (but not
always) signals a problem. Kurtosis doesn’t seem to be very
meaningful. The reason it is not easy to boil all these down to a
simple set of criteria is that some some of the metrics interact with
each other.

Beta-Geometric Correction

If you have a “bad” or poorly-behaving or “skewed” dataset (e.g. with mostly low
counts, dominated by a few high counts), right now the only remedy you
can try is applying the Beta-Geometric correction (BGC), which is a
non-linear adjustment to the insertion counts in a wig file to make
them more like an ideal Geometric distribution (DeJesus & Ioerger, 2016 [https://www.ncbi.nlm.nih.gov/pubmed/26932272]). (Note, all the
other normalizations, like TTR, are linear adjustments, and so they
can’t correct for skewing.)

In the GUI, when you are looking, you can change
the normalization (e.g. from TTR to betageom) using the drop-down. Be aware that the Beta-Geometric
normalization is compute-intensive and might take few minutes.

If it looks like it might help (i.e. if the QQ-plot fits the diagonal better using BG
normalization),
you can created BG-corrected versions of individual wig files by
exporting them using the normalize command
on the command-line with ‘-n betageom’ to specify normalization.

Analysis Methods

TRANSIT has analysis methods capable of analyzing Himar1 and Tn5 datasets.
Below is a description of some of the methods.

Gumbel

The Gumbel can be used to determine which genes are essential in a
single condition. It does a gene-by-gene analysis of the insertions at
TA sites with each gene, makes a call based on the longest consecutive
sequence of TA sites without insertion in the genes, calculates the
probability of this using a Bayesian model.

Note

Intended only for Himar1 datasets.

How does it work?

For a formal description of how this method works, see our paper [DeJesus2013]:

DeJesus, M.A., Zhang, Y.J., Sassettti, C.M., Rubin, E.J.,
Sacchettini, J.C., and Ioerger, T.R. (2013).

Bayesian analysis of gene essentiality based on sequencing of transposon insertion libraries. [http://www.ncbi.nlm.nih.gov/pubmed/23361328] Bioinformatics, 29(6):695-703.

Example

python3 transit.py gumbel <comma-separated .wig files> <annotation .prot_table or GFF3> <output file> [Optional Arguments]
 Optional Arguments:
 -s <integer> := Number of samples. Default: -s 10000
 -b <integer> := Number of Burn-in samples. Default -b 500
 -m <integer> := Smallest read-count to consider. Default: -m 1
 -t <integer> := Trims all but every t-th value. Default: -t 1
 -r <string> := How to handle replicates. Sum or Mean. Default: -r Sum
 -iN <float> := Ignore TAs occuring at given percentage (as integer) of the N terminus. Default: -iN 0
 -iC <float> := Ignore TAs occuring at given percentage (as integer) of the C terminus. Default: -iC 0

Parameters

	Samples: Gumbel uses Metropolis-Hastings (MH) to generate samples
of posterior distributions. The default setting is to run the
simulation for 10,000 iterations. This is usually enough to assure
convergence of the sampler and to provide accurate estimates of
posterior probabilities. Less iterations may work, but at the risk of
lower accuracy.

	Burn-In: Because the MH sampler many not have stabilized in the
first few iterations, a “burn-in” period is defined. Samples obtained
in this “burn-in” period are discarded, and do not count towards
estimates.

	Trim: The MH sampler produces Markov samples that are correlated.
This parameter dictates how many samples must be attempted for every
sampled obtained. Increasing this parameter will decrease the
auto-correlation, at the cost of dramatically increasing the
run-time. For most situations, this parameter should be left at the
default of “1”.

	Minimum Read: The minimum read count that is considered a true
read. Because the Gumbel method depends on determining gaps of TA
sites lacking insertions, it may be susceptible to spurious reads
(e.g. errors). The default value of 1 will consider all reads as true
reads. A value of 2, for example, will ignore read counts of 1.

	Replicates: Determines how to deal with replicates by averaging
the read-counts or summing read counts across datasets. This should
not have an affect for the Gumbel method, aside from potentially
affecting spurious reads.

Outputs and diagnostics

The Gumbel method generates a tab-separated output file at the location
chosen by the user. This file will automatically be loaded into the
Results Files section of the GUI, allowing you to display it as a table.
Alternatively, the file can be opened in a spreadsheet software like
Excel as a tab-separated file. The columns of the output file are
defined as follows:

	Column Header

	Column Definition

	ORF

	Gene ID.

	Name

	Name of the gene.

	Description

	Gene description.

	k

	Number of Transposon Insertions Observed within the ORF.

	n

	Total Number of TA dinucleotides within the ORF.

	r

	Length of the Maximum Run of Non-Insertions observed.

	s

	Span of nucleotides for the Maximum Run of Non-Insertions.

	zbar

	Posterior Probability of Essentiality.

	Call

	Essentiality call for the gene. Depends on FDR corrected thresholds. E=Essential U=Uncertain, NE=Non-Essential, S=too short

Note: Technically, Bayesian models are used to calculate posterior
probabilities, not p-values (which is a concept associated with the
frequentist framework). However, we have implemented a method for
computing the approximate false-discovery rate (FDR) that serves a
similar purpose. This determines a threshold for significance on the
posterior probabilities that is corrected for multiple tests. The
actual thresholds used are reported in the headers of the output file
(and are near 1 for essentials and near 0 for non-essentials). There
can be many genes that score between the two thresholds (t1 < zbar <
t2). This reflects intrinsic uncertainty associated with either low
read counts, sparse insertion density, or small genes. If the
insertion_density is too low (< ~30%), the method may not work as
well, and might indicate an unusually large number of Uncertain or
Essential genes.

Run-time

The Gumbel method takes on the order of 10 minutes for 10,000 samples.
Run-time is linearly proportional to the ‘samples’ parameter, or length
of MH sampling trajectory. Other notes: Gumbel can be run on multiple
replicates; replicate datasets will be automatically merged.

griffin

This is an earlier version of the Gumbel method that
identifies essential genes based on how unlikely ‘gaps’
(or consecutive runs of TA sites with 0 insertions) are,
given the overall level of saturation.
It is a frequentist (non-Bayesian) model that uses
the Gumbel Extreme-Value Distribution as a likelihood function.
This is the analysis used in our paper on
cholesterol catabolism (Griffin et al., 2011) [http://www.ncbi.nlm.nih.gov/pubmed/21980284].
All things considered, you are probably better off using the
hierarchical-Bayesian Gumbel model above, which does a better job
of estimating internal parameters.

Tn5Gaps

The Tn5Gaps method can be used to determine which genes are essential
in a single condition for Tn5 datasets. It does an analysis of the
insertions at each site within the genome, makes a call for a given
gene based on the length of the most heavily overlapping run of sites
without insertions (gaps), calculates the probability of this using a
the Gumbel distribution.

Note

Intended only for Tn5 datasets.

How does it work?

This method is loosely is based on the original gumbel analysis
method described in this paper:

Griffin, J.E., Gawronski, J.D., DeJesus, M.A., Ioerger, T.R., Akerley, B.J., Sassetti, C.M. (2011).
High-resolution phenotypic profiling defines genes essential for mycobacterial survival and cholesterol catabolism. [http://www.ncbi.nlm.nih.gov/pubmed/21980284] PLoS Pathogens, 7(9):e1002251.

The Tn5Gaps method modifies the original method in order to work on
Tn5 datasets, which have significantly lower saturation of insertion sites
than Himar1 datasets. The main difference comes from the fact that
the runs of non-insertion (or “gaps”) are analyzed throughout the whole
genome, including non-coding regions, instead of within single genes.
In doing so, the expected maximum run length is calculated and a
p-value can be derived for every run. A gene is then classified by
using the p-value of the run with the largest number of nucleotides
overlapping with the gene.

This method was tested on a Salmonella Tn5 dataset presented in this paper:

Langridge GC, Phan MD, Turner DJ, Perkins TT, Parts L, Haase J,
Charles I, Maskell DJ, Peters SE, Dougan G, Wain J, Parkhill J, Turner
AK. (2009). Simultaneous assay of every Salmonella Typhi gene using one million
transposon mutants. [http://www.ncbi.nlm.nih.gov/pubmed/19826075] Genome Res. , 19(12):2308-16.

This data was downloaded from SRA (located here [http://trace.ncbi.nlm.nih.gov/Traces/sra/?study=ERP000051]) , and used to make
wig files (base [http://orca1.tamu.edu/essentiality/transit/data/salmonella_base.wig] and bile [http://orca1.tamu.edu/essentiality/transit/data/salmonella_bile.wig]) and the following 4 baseline datasets
were merged to make a wig file: (IL2_2122_1,3,6,8). Our analysis
produced 415 genes with adjusted p-values less than 0.05, indicating
essentiality, and the analysis from the above paper produced 356
essential genes. Of these 356 essential genes, 344 overlap with the
output of our analysis.

Usage

python3 ../../../transit.py tn5gaps <comma-separated .wig files> <annotation .prot_table or GFF3> <output file> [Optional Arguments]

 Optional Arguments:
 -m <integer> := Smallest read-count to consider. Default: -m 1
 -r <string> := How to handle replicates. Sum or Mean. Default: -r Sum
 -iN <float> := Ignore TAs occuring within given percentage (as integer) of the N terminus. Default: -iN 0
 -iC <float> := Ignore TAs occuring within given percentage (as integer) of the C terminus. Default: -iC 0

Parameters

	Minimum Read: The minimum read count that is considered a true read. Because the Gumbel method depends on determining gaps of TA sites lacking insertions, it may be suceptible to spurious reads (e.g. errors). The default value of 1 will consider all reads as true reads. A value of 2, for example, will ignore read counts of 1.

	Replicates: Determines how to deal with replicates by averaging the read-counts or suming read counts accross datasets. This should not have an affect for the Gumbel method, aside from potentially affecting spurious reads.

	-iN: Trimming of insertions in N-terminus (given as percentage of ORF length, e.g. “5” for 5%; default=0)

	-iC: Trimming of insertions in C-terminus (given as percentage of ORF length, e.g. “5” for 5%; default=0)

Example

python3 PATH/src/transit.py tn5gaps salmonella_baseline.wig Salmonella-Ty2.prot_table salmonella_baseline_tn5gaps_trimmed.dat -m 2 -r Sum -iN 5 -iC 5

These input and output files can be downloaded from the Example Data section on the Transit home page [http://saclab.tamu.edu/essentiality/transit/index.html] .

Outputs and diagnostics

The Tn5Gaps method generates a tab-separated output file at the
location chosen by the user. This file will automatically be loaded
into the Results Files section of the GUI, allowing you to display it
as a table. Alternatively, the file can be opened in a spreadsheet
software like Excel as a tab-separated file. The columns of the output
file are defined as follows:

	Column Header

	Column Definition

	ORF

	Gene ID.

	Name

	Name of the gene.

	Desc

	Gene description.

	k

	Number of Transposon Insertions Observed within the ORF.

	n

	Total Number of TA dinucleotides within the ORF.

	r

	Length of the Maximum Run of Non-Insertions observed.

	ovr

	The number of nucleotides in the overlap with the longest run partially covering the gene.

	lenovr

	The length of the above run with the largest overlap with the gene.

	pval

	P-value calculated by the permutation test.

	padj

	Adjusted p-value controlling for the FDR (Benjamini-Hochberg).

	call

	Essentiality call for the gene. Depends on FDR corrected thresholds. Essential or Non-Essential.

Run-time

The Tn5Gaps method takes on the order of 10 minutes.
Other notes: Tn5Gaps can be run on multiple replicates; replicate
datasets will be automatically merged.

HMM

The HMM method can be used to determine the essentiality of the entire genome, as opposed to gene-level analysis of the other methods. It is capable of identifying regions that have unusually high or unusually low read counts (i.e. growth advantage or growth defect regions), in addition to the more common categories of essential and non-essential.

Note

Intended only for Himar1 datasets.

How does it work?

For a formal description of how this method works, see our paper [DeJesus2013HMM]:

DeJesus, M.A., Ioerger, T.R. A Hidden Markov Model for identifying essential and growth-defect regions in bacterial genomes from transposon insertion sequencing data. [http://www.ncbi.nlm.nih.gov/pubmed/24103077] BMC Bioinformatics. 2013. 14:303

Example

python3 transit.py hmm <comma-separated .wig files> <annotation .prot_table or GFF3> <output file>
 Optional Arguments:
 -r <string> := How to handle replicates. Sum, Mean. Default: -r Mean
 -l := Perform LOESS Correction; Helps remove possible genomic position bias. Default: Off.
 -iN <float> := Ignore TAs occuring at given percentage (as integer) of the N terminus. Default: -iN 0
 -iC <float> := Ignore TAs occuring at given percentage (as integer) of the C terminus. Default: -iC 0

Parameters

The HMM method automatically estimates the necessary statistical
parameters from the datasets. You can change how the method handles
replicate datasets:

	Replicates: Determines how the HMM deals with replicate datasets
by either averaging the read-counts or summing read counts across
datasets. For regular datasets (i.e. mean-read count > 100) the
recommended setting is to average read-counts together. For sparse
datasets, it summing read-counts may produce more accurate results.

Output and Diagnostics

The HMM method outputs two files. The first file provides the most
likely assignment of states for all the TA sites in the genome. Sites
can belong to one of the following states: “E” (Essential), “GD”
(Growth-Defect), “NE” (Non-Essential), or “GA” (Growth-Advantage). In
addition, the output includes the probability of the particular site
belonging to the given state. The columns of this file are defined as
follows:

	Column #

	Column Definition

	1

	Coordinate of TA site

	2

	Observed Read Counts

	3

	Probability for ES state

	4

	Probability for GD state

	5

	Probability for NE state

	6

	Probability for GA state

	7

	State Classification (ES = Essential, GD = Growth Defect, NE = Non-Essential, GA = Growth-Defect)

	8

	Gene(s) that share(s) the TA site.

The second file provides a gene-level classification for all the
genes in the genome. Genes are classified as “E” (Essential), “GD”
(Growth-Defect), “NE” (Non-Essential), or “GA” (Growth-Advantage)
depending on the number of sites within the gene that belong to those
states.

	Column Header

	Column Definition

	Orf

	Gene ID

	Name

	Gene Name

	Desc

	Gene Description

	N

	Number of TA sites

	n0

	Number of sites labeled ES (Essential)

	n1

	Number of sites labeled GD (Growth-Defect)

	n2

	Number of sites labeled NE (Non-Essential)

	n3

	Number of sites labeled GA (Growth-Advantage)

	Avg. Insertions

	Mean insertion rate within the gene

	Avg. Reads

	Mean read count within the gene

	State Call

	State Classification (ES = Essential, GD = Growth Defect, NE = Non-Essential, GA = Growth-Defect)

Note: Libraries that are too sparse (e.g. < 30%) or which contain
very low read-counts may be problematic for the HMM method, causing it
to label too many Growth-Defect genes.

Run-time

The HMM method takes less than 10 minutes to complete. The parameters
of the method should not affect the running-time.

Resampling

The resampling method is a comparative analysis the allows that can be
used to determine conditional essentiality of genes. It is based on a
permutation test, and is capable of determining read-counts that are
significantly different across conditions.

See Pathway Enrichment Analysis for post-processing the hits to
determine if the hits are associated with a particular functional catogory
of genes or known biological pathway.

Note

Can be used for both Himar1 and Tn5 datasets

How does it work?

This technique has yet to be formally published in the context of
differential essentiality analysis. Briefly, the read-counts at each
genes are determined for each replicate of each condition. The mean
read-count in condition A is subtracted from the mean read-count in
condition B, to obtain an observed difference in means. The TA
sites are then permuted for a given number of “samples”. For each one of
these permutations, the difference in read-counts is determined. This
forms a null distribution, from which a p-value is calculated for the
original, observed difference in read-counts.

Usage

python3 transit.py resampling <comma-separated .wig control files> <comma-separated .wig experimental files> <annotation .prot_table or GFF3> <output file> [Optional Arguments]
 Optional Arguments:
 -s <integer> := Number of samples. Default: -s 10000
 -n <string> := Normalization method. Default: -n TTR
 -h := Output histogram of the permutations for each gene. Default: Turned Off.
 -a := Perform adaptive resampling. Default: Turned Off.
 -ez := Exclude rows with zero accross conditions. Default: Turned off
 (i.e. include rows with zeros).
 -PC <float> := Pseudocounts used in calculating LFC. (default: 1)
 -l := Perform LOESS Correction; Helps remove possible genomic position bias.
 Default: Turned Off.
 -iN <float> := Ignore TAs occuring at given percentage (as integer) of the N terminus. Default: -iN 0
 -iC <float> := Ignore TAs occuring at given percentage (as integer) of the C terminus. Default: -iC 0
 --ctrl_lib := String of letters representing library of control files in order
 e.g. 'AABB'. Default empty. Letters used must also be used in --exp_lib
 If non-empty, resampling will limit permutations to within-libraries.

 --exp_lib := String of letters representing library of experimental files in order
 e.g. 'ABAB'. Default empty. Letters used must also be used in --ctrl_lib
 If non-empty, resampling will limit permutations to within-libraries.

Parameters

The resampling method is non-parametric, and therefore does not require
any parameters governing the distributions or the model. The following
parameters are available for the method:

	Samples: The number of samples (permutations) to perform. The
larger the number of samples, the more resolution the p-values
calculated will have, at the expense of longer computation time. The
resampling method runs on 10,000 samples by default.

	Output Histograms:Determines whether to output .png images of
the histograms obtained from resampling the difference in
read-counts.

	Adaptive Resampling: An optional “adaptive” version of resampling
which accelerates the calculation by terminating early for genes
which are likely not significant. This dramatically speeds up the
computation at the cost of less accurate estimates for those genes
that terminate early (i.e. deemed not significant). This option is
OFF by default. (see Notes below)

	Include Zeros: Select to include sites that are zero. This is the
preferred behavior, however, unselecting this (thus ignoring sites that)
are zero accross all dataset (i.e. completely empty), is useful for
decreasing running time (specially for large datasets like Tn5).

	Normalization Method: Determines which normalization method to
use when comparing datasets. Proper normalization is important as it
ensures that other sources of variability are not mistakenly treated
as real differences. See the Normalization section for a description
of normalization method available in TRANSIT.

	–ctrl_lib, –exp_lib: These are for doing resampling with datasets from multiple libraries, see below.

	-iN, -iC: Trimming of TA sites near N- and C-terminus.
The default for trimming TA sites in the termini of ORFs is 0.
However, TA sites in the stop codon (e.g. TAG) are automatically excluded.
Trimming is specified as a percentage (as an integer), so, for example,
if you want to trim TA sites within 5% of the termini, you would
add the flags ‘-iN 5 -iC 5’ (not 0.05).

	-PC: Pseudocounts used in calculation of LFCs (log-fold-changes, see Output and Diagnostics) in
resampling output file.
To suppress the appearance of artifacts due to high-magnitude of LFCs from
genes with low insertion counts (which
are more susceptible to noise), one can increase the pseudocounts using `-PC’.
Increasing PC to a value like 5 (which is
reasonable, given that TTR normalization scales data so average insertion counts is around 100)
can further reduce the appearance of artifacts (genes with low counts but large LFCs).
However, changing pseudocounts only affects the LFCs, and will not change the number of significant genes.

Notes

I recommend using -a (adaptive resampling). It runs much faster, and the p-values
will be very close to a full non-adaptive run (all 10,000 samples).

Occasionally, people ask if resampling can be done on intergenic regions as well.
It could be done pretty easily (for example by making a prot_table with coordinates
for the regions between genes). But it is usually not worthwhile, because most
intergenic regions are small (<100 bp) contain very few TA sites (often 0-2),
making it difficult to make confident calls on essentiality.

Doing resampling with a combined_wig file

Resampling can also now take a combined_wig file as input (containing insertion counts
for multiple sample), along with a samples_metadata file
that describes the samples. This mode is indicated with a ‘-c’ flag.
If you want to compare more than two conditions, see ZINB.

usage:

python3 transit.py resampling -c <combined_wig> <samples_metadata> <control_condition_name> <experimental_condition_name> <annotation .prot_table or GFF3> <output file> [Optional Arguments]

example:

python3 transit.py resampling -c antibiotic_combined_wig.txt antibiotic_samples_metadata.txt Untreated Isoniazid H37Rv.prot_table results.txt -a

Doing resampling with datasets from different libraries.

In most cases, comparisons are done among samples (replicates) from
the same library evaluated in two different conditions. But if the
samples themselves come from different libraries, then this could
introduce extra variability, the way resampling is normally done. To
compensate for this, if you specify which libraries each dataset comes
from, the permutations will be restricted to permuting counts only
among samples within each library. Statistical significance is still
determined from all the data in the end (by comparing the obversed
difference of means between the two conditions to a null distribution).
Of course, this method makes most sense when you have at least 1 replicate
from each library in each condition.

Doing resampling between different strains.

The most common case is that resampling is done among replicates all
from the same Tn library, and hence all the datasets (fastq files) are
mapped to the same refence genome. Occasionally, it is useful to
compare TnSeq datasets between two different strains, such as a
reference strain and a clinical isolate from a different lineage.
Suppose for simplicity that you want to compare one replicate from
strain A (e.g. H37Rv) and one replicate from strain B (e.g. CDC1551).
Resampling was not originally designed to handle this case. The
problem is that the TA sites in the .wig files with insertion counts
might have different coordinates (because of shifts due to indels
between the genomes). Furthermore, a given gene might not even have
the same number of TA sites in the two strains (due to SNPs). A
simplistic solution is to just map both datasets to the same genome
sequence (say H37Rv, for example). Then a resampling comparison could
be run as usual, because the TA sites would all be on the same
coordinate system. This is not ideal, however, because some reads of
strain B might not map properly to genome A due to SNPs or indels
between the genomes. In fact, in more divergent organisms with higher
genetic diversity, this can cause entire regions to look artificially
essential, because reads fail to map in genes with a large number of
SNPs, resulting in the apparent absence of transposon insertions.

A better approach is to map each library to the custom genome sequence
of its own strain (using TPP). It turns out the resampling can still
be applied (since it is fundamentally a test on the difference of the
mean insertion count in each gene). The key to making this work,
aside from mapping each library to its own genome sequence, is that
you need an annotation (prot_table) for the second strain that has
been “adapted” from the first strain. This is because,
to do a comparison between conditions for a gene, Transit needs to be
able to determine which TA sites fall in that gene for each strain.
This can be achieved by producing a “modified” prot_table, where the
START and END coordinates of each ORF in strain B have been adjusted
according to an alignment between genome A and genome B. You can use
this web app: Prot_table Adjustment Tool [http://saclab.tamu.edu/cgi-bin/iutils/app.cgi/], to create a
modifed prot_table, given the prot_table for one strain and the fasta
files for both genomes (which will be aligned). In other words, the
app allows you to create ‘B.prot_table’ from ‘A.prot_table’ (and ‘A.fna’
and ‘B.fna’).

Once you have created B.prot_table, all you need to do is provide
both prot_tables to resampling (either through the GUI, or on the
command-line), as a comma-separated list. For example:

> python3 transit.py resampling Rv_1_H37Rv.wig,Rv_2_H37Rv.wig 632_1_632WGS.wig,632_2_632WGS.wig H37Rv.prot_table,632WGS.prot_table resampling_output.txt -a

In this example, 2 replicates from H37Rv (which had been mapped to
H37Rv.fna by TPP) were compared to 2 replicates from strain 632 (which
had been mapped to 632WGS.fna, the custom genome seq for strain 632).
The important point is that two annotations are given in the 3rd
arg on the command-line: H37Rv.prot_table,632WGS.prot_table. The
assumption is that the ORF boundaries for H37Rv will be used to find
TA sites in Rv_1_H37Rv.wig and Rv_2_H37Rv.wig, and the ORF boundaries
in 632WGS.prot_table (which had been adapted from H37Rv.prot_table
using the web app above) will be used to find TA sites in the
corrsponding regions in 632_1_632WGS.wig and 632_2_632WGS.wig.

Note that, in contrast to handling datasets from different libraries
disucssed above, in this case, the assumption is that all replicates
in condition A will be from one library (and one strain), and all
replicates in condition B will be from another library (another strain).

Output and Diagnostics

The resampling method outputs a tab-delimited file with results for each
gene in the genome. P-values are adjusted for multiple comparisons using
the Benjamini-Hochberg procedure (called “q-values” or “p-adj.”). A
typical threshold for conditional essentiality on is q-value < 0.05.

	Column Header

	Column Definition

	Orf

	Gene ID.

	Name

	Name of the gene.

	Description

	Gene description.

	Sites

	Number of TA sites in the gene.

	Mean Ctrl

	Mean of read counts in condition 1. (avg over TA sites and reps)

	Mean Exp

	Mean of read counts in condition 2.

	log2FC

	Log-fold-change of exp (treatment) over ctrl (untreated)

	Sum Ctrl

	Sum of read counts in condition 1.

	Sum Exp

	Sum of read counts in condition 2.

	Delta Mean

	Difference in the MEAN insertion counts.

	p-value

	P-value calculated by the permutation test.

	Adj. p-value

	Adjusted p-value controlling for the FDR (Benjamini-Hochberg)

log2FC: (log-fold-change, LFC)
For each gene, the LFC is calculated as the log-base-2 of the
ratio of mean insertion counts in the experimental (treated) condition vs. the
control condition (untreated, reference).
The default is PC=1, which avoids the result being undefined
for genes with means of 0 in either condition. Pseudocounts can be
changed using the -PC flag (above).

LFC = log2((mean_insertions_in_exp + PC)/(mean_insertions_in_ctrl + PC))

Run-time

A typical run of the resampling method with 10,000 samples will take
around 45 minutes (with the histogram option ON). Using the adaptive
resampling option (-a), the run-time is reduced to around 10 minutes.

Mann-Whitney U-test (utest)

This is a method for comparing datasets from a TnSeq library evaluated in
two different conditions, analogous to resampling.
This is a rank-based test on whether the level of insertions in a
gene or chromosomal region are significantly higher or lower in one
condition than the other. Effectively, the insertion counts at the TA
sites in the region are pooled and sorted. Then the combined ranks of the counts
in region A are compared to those in region B, and p-value is calculated
that reflects whether there is a significant difference in the ranks.
The advantage of this method is that it is less sensitive to outliers
(a unusually high insertion count at just a single TA site).
A reference for this method is (Santa Maria et al., 2014) [https://www.ncbi.nlm.nih.gov/pubmed/25104751].

Genetic Interactions

The genetic interactions (GI) method is a comparative analysis used
used to determine genetic interactions. It is a Bayesian method
that estimates the distribution of log fold-changes (logFC) in two
strain backgrounds under different conditions, and identifies significantly
large changes in enrichment (delta_logFC) to identify those genes
that imply a genetic interaction.

Note

Can be used for both Himar1 and Tn5 datasets

How does it work?

GI performs a comparison among 4 groups of datasets, strain A and B assessed in conditions 1 and 2 (e.g. control vs treatment).
It looks for interactions where the response to the treatment (i.e. effect on insertion counts) depends on the strain.

If you think of the effect of treatment as a log-fold-change (e.g. of
the insert counts between control and treatment in strain A), which is
like a “slope”, then the interacting genes are those that exhibit a difference
in the effect of the treatment between the strains, and hence a difference in the
slopes between strain A and B (represented by ‘delta_LFC’ in the output file).

For a formal description of how this method works, see our paper [DeJesus2017NAR]:

DeJesus, M.A., Nambi, S., Smith, C.M., Baker, R.E., Sassetti, C.M., Ioerger, T.R. Statistical analysis of genetic interactions in Tn-Seq data. [https://www.ncbi.nlm.nih.gov/pubmed/28334803] Nucleic Acids Research. 2017. 45(11):e93. doi: 10.1093/nar/gkx128.

Statistical Significance

The computation that is done by GI is to compute the posterior distribution of the delta_LFC (or mean change in slopes)
through Bayesian sampling.
The primary method to determine significance of genes is whethter this the mean_delta_LFC is significantly differnt than 0.
However, since the mean_delta_LFC is a distribution, we represent it by a Highest Density Interval, HDI, which is
similar to a 95% confidence interval. Furthermore, rather than asking whether the HDI overlaps 0 exactly, we expand the interval
around 0 to a Region of Probable Equivalence (ROPE), which is set to [-0.5,0.5] by default. Hence the significant genes
are those for which the HDI does not overlap the ROPE. GI has a flag to adjust the size of the ROPE, if desired.

In the GI output file, the final column give the significance call, along with type of interaction.
If a gene is not significant, it will be marked with “No Interaction” (for the HDI method, meaning HDI overlaps the ROPE).
If a gene IS significant, then its interaction will be cateogrized in 3 types (see NAR paper):

	Aggravating - mean_delta_LFC is negative; gene is more required in treatment than control in the B strain, compared to the A strain

	Suppressive - mean_delta_LFC is positive, and the gene was not conditionally essential in strain A (flat slope), but becomes conditionally non-essential in strain B when treated (positive slope)

	Alleviating - mean_delta_LFC is positive, but the conditional requirement (negative slope) of the gene in strain A with treatment is “cancelled” by the modification in strain B

[image: _images/genetic_interaction_types.png]
A limitation of this HDI approach is that it is discrete (i.e. overlap is either True or False), but does not provide a quantitative metric
for the degree of overlap. Thus a second method for assessing significance of genetic interactions is to compute
the probability of overlap. The lower the probability, the more differnt the delta_LFC is from 0, indicating a more
significant interaction. In this case, genes with prob < 0.05 are considered interactions and classified by the 3 types above,
while genes with prob >= 0.05 are marked as “No Interaction”.

In addition, since we are calculating significance for thousands of genes in parallel,
many researchers prefer to have some method for correcting for multiple tests, to control the false discovery rate.
However, FDR correction is generally used only for frequentist analyses, and he GI method is fundamentally a Bayesian approach.
Technically, in a Bayesian framework, FDR correction is not needed. Any adjustment for expectations about number of hits
would be achieved through adjusting parameters for prior distributions. Nonetheless, GI includes options for
two methods that approximate FDR correction: BFDR (Bayesian False Discovery Rate correction,
Newton M.A., Noueiry A., Sarkar D., Ahlquist P. (2004). Detecting differential gene expression with a semiparametric hierarchical
mixture method. Biostatistics, 5:155–176. [https://pubmed.ncbi.nlm.nih.gov/15054023/]) and FWER (Familty-Wise
Error Rate control). When these corrections are applied, a threshold of 0.05 for the adjusted probability of overlap
is used for each, and this determines which
genes are classified as interacting (1 of 3 types) or marked as “No Interaction”, as above.

In order to enable users to evaluate these various methods for determining significance of interactions,
a ‘-signif’ flag is provided for the GI method. The options are:

	-signif HDI: significant genes are those for which the HDI does not overlap the ROPE

	-signif prob: significant genes are those with prob < 0.05, where ‘prob’ is porbability that HDI overlap the ROPE (default)

	-signif BFDR: significant genes are those with adjusted prob < 0.05, where prob is adjusted by the BFDR method

	-signif FWER: significant genes are those with adjusted prob < 0.05, where prob is adjusted by the FWER method

‘-signif prob’ is the default method.

In the output file, the genes are sorted by the probability that the HDI overlaps the ROPE.
The genes at the top are rougly the genes with the highest absolute value of mean_delta_LFC.

Usage

python3 /pacific/home/ioerger/transit/src/transit.py GI <wigs_for_strA_cond1> <wigs_for_strA_cond2> <wigs_for_strB_cond1> <wigs_for_strB_cond2> <annotation .prot_table or GFF3> <output file> [Optional Arguments]

 GI performs a comparison among 4 groups of datasets, strain A and B assessed in conditions 1 and 2 (e.g. control vs treatment).
 It looks for interactions where the response to the treatment (i.e. effect on insertion counts) depends on the strain (output variable: delta_LFC).
 Provide replicates in each group as a comma-separated list of wig files.
 HDI is highest density interval for posterior distribution of delta_LFC, which is like a confidence interval on difference of slopes.
 Genes are sorted by probability of HDI overlapping with ROPE. (genes with the highest abs(mean_delta_logFC) are near the top, approximately)
 Significant genes are indicated by 'Type of Interaction' column (No Interaction, Aggravating, Alleviating, Suppressive).
 By default, hits are defined as "Is HDI outside of ROPE?"=TRUE (i.e. non-overlap of delta_LFC posterior distritbuion with Region of Probably Equivalence around 0)
 Alternative methods for significance: use -signif flag with prob, BFDR, or FWER. These affect 'Type of Interaction' (i.e. which genes are labeled 'No Interaction')

 Optional Arguments:
 -s <integer> := Number of samples. Default: -s 10000
 --rope <float> := Region of Practical Equivalence. Area around 0 (i.e. 0 +/- ROPE) that is NOT of interest. Can be thought of similar to the area of the null-hypothesis. Default: --rope 0.5
 -n <string> := Normalization method. Default: -n TTR
 -iz := Include rows with zero across conditions.
 -l := Perform LOESS Correction; Helps remove possible genomic position bias. Default: Turned Off.
 -iN <float> := Ignore TAs occuring at given percentage (as integer) of the N terminus. Default: -iN 0
 -iC <float> := Ignore TAs occuring at given percentage (as integer) of the C terminus. Default: -iC 0
 -signif HDI := (default) Significant if HDI does not overlap ROPE; if HDI overlaps ROPE, 'Type of Interaction' is set to 'No Interaction'
 -signif prob := Optionally, significant hits are re-defined based on probability (degree) of overlap of HDI with ROPE, prob<0.05 (no adjustment)
 -signif BFDR := Apply "Bayesian" FDR correction (see doc) to adjust HDI-ROPE overlap probabilities so that significant hits are re-defined as BFDR<0.05
 -signif FWER := Apply "Bayesian" FWER correction (see doc) to adjust HDI-ROPE overlap probabilities so that significant hits are re-defined as FWER<0.05

Example

In this example, the effect of a knockout of SigB is being evaluated for its effect on tolerance of isoniazid.
Some genes may become more essential (or less) in the presence of INH in the wild-type strain.
The genes implied to interact with SigB are those whose response to INH changes in the knock-out strain compared to the wild-type.
Note there are 2 replicates in each of the 4 groups of datasets.

python3 transit/src/transit.py GI WT_untreated1.wig,WT_untreated2.wig WT_INH_1.wig,WT_INH_2.wig delta_SigB_untreated1.wig,delta_SigB_untreated2.wig delta_SigB_INH_1.wig,delta_SigB_INH_2.wig mc2_155_tamu.prot_table GI_delta_SigB_INH.txt

Parameters

The resampling method is non-parametric, and therefore does not require
any parameters governing the distributions or the model. The following
parameters are available for the method:

	Samples: The number of samples (permutations) to perform. The
larger the number of samples, the more resolution the p-values
calculated will have, at the expense of longer computation time. The
resampling method runs on 10,000 samples by default.

	ROPE: Region of Practical Equivalence. This region defines an area
around 0.0 that represents differences in the log fold-change that are
practically equivalent to zero. This aids in ignoring spurious changes
in the logFC that would otherwise be identified under a strict
null-hypothesis of no difference.

	Include Zeros: Select to include sites that are zero. This is the
preferred behavior, however, unselecting this (thus ignoring sites that)
are zero accross all dataset (i.e. completely empty), is useful for
decreasing running time (specially for large datasets like Tn5).

	Normalization Method: Determines which normalization method to
use when comparing datasets. Proper normalization is important as it
ensures that other sources of variability are not mistakenly treated
as real differences. See the Normalization section for a description
of normalization method available in TRANSIT.

	Significance Method:

	-signif HDI: significant genes are those for which the HDI does not overlap the ROPE

	-signif prob: significant genes are those with prob < 0.05, where ‘prob’ is porbability that HDI overlap the ROPE (default)

	-signif BFDR: significant genes are those with adjusted prob < 0.05, where prob is adjusted by the BFDR method

	-signif FWER: significant genes are those with adjusted prob < 0.05, where prob is adjusted by the FWER method

Output and Diagnostics

The GI method outputs a tab-delimited file with results for each
gene in the genome.
All genes are sorted by significance using the probability that the HDI overlaps the ROPE.
Significant genes are those NOT marked with ‘No Interaction’ in the last column.

	Column Header

	Column Definition

	Orf

	Gene ID.

	Name

	Name of the gene.

	Number of TA Sites

	Number of TA sites in the gene.

	Mean count (Strain A Condition 1)

	Mean read count in strain A, condition 1

	Mean count (Strain A Condition 2)

	Mean read count in strain A, condition 2

	Mean count (Strain B Condition 1)

	Mean read count in strain B, condition 1

	Mean count (Strain B Condition 2)

	Mean read count in strain B, condition 2

	Mean logFC (Strain A)

	The log2 fold-change in read-count for strain A

	Mean logFC (Strain B)

	The log2 fold-change in read-count for strain B

	Mean delta logFC

	The difference in log2 fold-change between B and A

	Lower Bound delta logFC

	Lower bound of the difference (delta logFC)

	Upper Bound delta logFC

	Upper bound of the difference (delta logFC)

	Prob. of delta-logFC being within ROPE

	Portion of the delta-logFC within ROPE

	Adjusted Probability (BFDR)

	Posterior probability adjusted for comparisons

	Is HDI outside ROPE?

	True/False whether the delta-logFC overlaps ROPE

	Type of Interaction

	Final classification.

ANOVA

The Anova (Analysis of variance) method is used to determine which genes
exhibit statistically significant variability of insertion counts across multiple conditions.
Unlike other methods which take a comma-separated list of wig files as input,
the method takes a combined_wig file (which combined multiple datasets in one file)
and a samples_metadata file (which describes which samples/replicates belong
to which experimental conditions).

How does it work?

The method performs the One-way anova test [https://en.wikipedia.org/wiki/Analysis_of_variance?oldformat=true#The_F-test] for each gene across conditions.
It takes into account variability of normalized transposon insertion counts among TA sites
and among replicates,
to determine if the differences among the mean counts for each condition are significant.

Example

python3 transit.py anova <combined wig file> <samples_metadata file> <annotation .prot_table> <output file> [Optional Arguments]
 Optional Arguments:
 -n <string> := Normalization method. Default: -n TTR
 --ignore-conditions <cond1,...> := Comma separated list of conditions to ignore, for the analysis. Default: None
 --include-conditions <cond1,...> := Comma separated list of conditions to include, for the analysis. Default: All
 -iN <float> := Ignore TAs occurring within given percentage (as integer) of the N terminus. Default: -iN 0
 -iC <float> := Ignore TAs occurring within given percentage (as integer) of the C terminus. Default: -iC 0
 -PC := Pseudocounts to use in calculating LFCs. Default: -PC 5

The output file generated by ANOVA identifies which genes exhibit statistically
significant variability in counts across conditions (see Output and Diagnostics below).

Note: the combined_wig input file can be generated from multiple wig
files through the Transit GUI
(File->Export->Selected_Datasets->Combined_wig), or via the ‘export’
command on the command-line (see combined_wig).

Format of the samples metadata file: a tab-separated file (which you can edit in Excel)
with 3 columns: Id, Condition, and Filename (it must have these headers). You can include
other columns of info, but do not include additional rows. Individual rows can be
commented out by prefixing them with a ‘#’. Here is an example of a samples metadata file:
The filenames should match what is shown in the header of the combined_wig (including pathnames, if present).

ID Condition Filename
glyc1 glycerol /Users/example_data/glycerol_rep1.wig
glyc2 glycerol /Users/example_data/glycerol_rep2.wig
chol1 cholesterol /Users/example_data/cholesterol_rep1.wig
chol2 cholesterol /Users/example_data/cholesterol_rep2.wig
chol2 cholesterol /Users/example_data/cholesterol_rep3.wig

Parameters

The following parameters are available for the method:

	Ignore Conditions, Include Conditions: Can use this to drop
conditions not of interest or specify a particular subset of conditions to use for ANOVA analysis.

	Normalization Method: Determines which normalization method to
use when comparing datasets. Proper normalization is important as it
ensures that other sources of variability are not mistakenly treated
as real differences. See the Normalization section for a description
of normalization method available in TRANSIT.

	-PC Pseudocounts to use in calculating LFCs (see below). Default: -PC 5

Output and Diagnostics

The anova method outputs a tab-delimited file with results for each
gene in the genome. P-values are adjusted for multiple comparisons using
the Benjamini-Hochberg procedure (called “q-values” or “p-adj.”). A
typical threshold for conditional essentiality on is q-value < 0.05.

	Column Header

	Column Definition

	Orf

	Gene ID.

	Name

	Name of the gene.

	TAs

	Number of TA sites in Gene

	Means…

	Mean readcounts for each condition

	LFCs…

	Log-fold-changes of counts in each condition vs mean across all conditions

	p-value

	P-value calculated by the Anova test.

	p-adj

	Adjusted p-value controlling for the FDR (Benjamini-Hochberg)

	status

	Debug information (If any)

LFCs (log-fold-changes):
For each condition, the LFC is calculated as the log-base-2 of the
ratio of mean insertion count in that condition relative to the
mean of means across all the conditions.
Pseudocount are incorporated to reduce the impact of noise on LFCs, based on the formula below.
The pseudocounts can be adjusted using the -PC flag.
Changing the pseudocounts (via -PC) can reduce the artifactual appearance of genes with
high-magnitude LFCs but that have small overall counts (which are susceptible to noise).
Changing the pseudocounts will not affect the analysis of statistical significance and hence number of varying genes, however.

LFC = log2((mean_insertions_in_condition + PC)/(mean_of_means_across_all_conditions + PC))

Run-time

A typical run of the anova method takes less than 1 minute for a combined wig file with 6 conditions, 3 replicates per condition.

ZINB

The ZINB (Zero-Inflated Negative Binomial) method is used to determine
which genes exhibit statistically significant variability in either
the magnitude of insertion counts or local saturation, across multiple
conditions. Like ANOVA, the ZINB method takes a
combined_wig file (which combines multiple datasets in one file) and
a samples_metadata file (which describes which samples/replicates
belong to which experimental conditions).

ZINB can be applied to two or more conditions at a time. Thus it
subsumes resampling. Our testing suggests that
ZINB typically identifies 10-20% more varying genes than resampling
(and vastly out-performs ANOVA for detecting significant variability
across conditions). Furthermore, because of how ZINB treats magnitude
of read counts separately from local saturation in a gene, it
occasionally identifies genes with variability not detectable by
resampling analysis.

Note: ZINB analysis requires R (statistical analysis software)
to be installed on your system, along with the ‘pscl’ R package.
See Installation Instructions.

How does it work?

For a formal description of how this method works, see our paper [ZINB]:

Subramaniyam S, DeJesus MA, Zaveri A, Smith CM, Baker RE, Ehrt S, Schnappinger D, Sassetti CM, Ioerger TR. (2019). Statistical analysis of variability in TnSeq data across conditions using Zero-Inflated Negative Binomial regression. [https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-019-3156-z], BMC Bioinformatics. 2019 Nov 21;20(1):603. doi: 10.1186/s12859-019-3156-z.

Example

python3 transit.py zinb <combined wig file> <samples_metadata file> <annotation .prot_table> <output file> [Optional Arguments]
 Optional Arguments:
 -n <string> := Normalization method. Default: -n TTR
 --ignore-conditions <cond1,cond2> := Comma separated list of conditions to ignore, for the analysis. Default: None
 --include-conditions <cond1,cond2> := Comma separated list of conditions to include, for the analysis. Default: All
 -iN <float> := Ignore TAs occuring within given percentage of the N terminus. Default: -iN 5
 -iC <float> := Ignore TAs occuring within given percentage of the C terminus. Default: -iC 5
 -PC <N> := Pseudocounts used in calculating LFCs in output file. Default: -PC 5
 --condition := columnname (in samples_metadata) to use as the Condition. Default: "Condition"
 --covars <covar1,covar2...> := Comma separated list of covariates (in metadata file) to include, for the analysis.
 --interactions <covar1,covar2...> := Comma separated list of covariates to include, that interact with the condition for the analysis.
 -v := verbose, print out the model coefficients for each gene.
 --gene <Orf id or Gene name> := Run method for one gene and print model output.

Combined wig files

Transit now supports a new file format called ‘combined_wig’ which basically
combines multiple wig files into one file (with multiple columns). This is
used for some of the new analysis methods for larger collections of datasets, like Anova, ZINB.
Combined_wig files can created through the Transit GUI
(File->Export->Selected_Datasets->Combined_wig), or via the command line.
You can specify the normalization method you want to use with a flag.
TTR is the default, but other relevant normalization options would be ‘nonorm’
(i.e. preserve raw counts) and ‘betageom’ (this corrects for skew, but is slow).

> python3 src/transit.py export combined_wig --help

usage: python3 src/transit.py export combined_wig <comma-separated .wig files> <annotation .prot_table> <output file>

> python3 ../transit/src/transit.py export combined_wig Rv_1_H37RvRef.wig,Rv_2_H37RvRef.wig,Rv_3_H37RvRef.wig H37Rv.prot_table clinicals_combined_TTR.wig -n TTR

Samples Metadata File

Format of the samples_metadata file: a tab-separated file (which you
can edit in Excel) with 3 columns: Id, Condition, and Filename (it
must have these headers). You can include other columns of info, but
do not include additional rows. Individual rows can be commented out
by prefixing them with a ‘#’. Here is an example of a samples
metadata file: The filenames should match what is shown in the header
of the combined_wig (including pathnames, if present).

ID Condition Filename
glyc1 glycerol /Users/example_data/glycerol_rep1.wig
glyc2 glycerol /Users/example_data/glycerol_rep2.wig
chol1 cholesterol /Users/example_data/cholesterol_rep1.wig
chol2 cholesterol /Users/example_data/cholesterol_rep2.wig
chol2 cholesterol /Users/example_data/cholesterol_rep3.wig

Parameters

The following parameters are available for the method:

	Ignore Conditions: Ignores the given set of conditions from the ZINB test.

	Include Conditions: Includes the given set of conditions from the ZINB test. Conditions not in this list are ignored.

	Normalization Method: Determines which normalization method to
use when comparing datasets. Proper normalization is important as it
ensures that other sources of variability are not mistakenly treated
as real differences. See the Normalization section for a description
of normalization method available in TRANSIT.

	Covariates: If additional covariates distinguishing the samples are available, such as library, timepoint, or genotype, they may be incorporated in the test.

Covariates and Interactions

While ZINB is focus on identifying variability of insertion counts across conditions,
the linear model also allows you to take other variables into account.
There are two types of auxilliary variables: covariates and interactions. These can be provided as extra columns in the samples metadata file.
Covariates are attributes of the individual samples that could have a systematic
effect on the insertion counts which we would like to account for and subsequently ignore
(like nuissance variables). Examples include things like batch or library.

Interactions are extra variables for which we want to test their effect on the
main variable (or condition). For example, suppose we collect TnSeq data at several
different timepoints (e.g. length of incubation or infection). If we just test
time as the condition, we will be identifying genes that vary over time (if timepoints
are numeric, think of the model as fitting a ‘slope’ to the counts).
But suppose we have data for both a wild-type and knock-out strain. Then we might be
interested in genes for which the time-dependent behavior differs between the two
strains (think: different ‘slopes’). In such a case, we would say strain and time interact.

If covariates distinguishing the samples are available,
such as batch or library, they may be
incorporated in the ZINB model by using the --covars flag and samples
metadata file. For example, consider the following samples metadata
file, with a column describing the batch information of each
replicate.

ID Condition Filename Batch
glyc1 glycerol /Users/example_data/glycerol_rep1.wig B1
glyc2 glycerol /Users/example_data/glycerol_rep2.wig B2
chol1 cholesterol /Users/example_data/cholesterol_rep1.wig B1
chol2 cholesterol /Users/example_data/cholesterol_rep2.wig B2
chol2 cholesterol /Users/example_data/cholesterol_rep3.wig B2

This information can be included to eliminate variability due to batch by using
the --covars flag.

python3 transit.py zinb combined.wig samples.metadata prot.table output.file --covars Batch

Similarly, an interaction variable may be included in the model.
This is specified by the user with the --interactions flag,
followed by the name of a column in the samples metadata to test as the interaction
with the condition. If there are multiple interactions, they may be given as a comma-separated list.

To give an example,
consider an experiment where the condition represents
a treatment (e.g. with values ‘treated’ and ‘control’), and we have another column
called Strain (with values ‘wild-type’ and ‘mutant’).
If we want to test whether the effect of the treatment (versus control)
differs depending on the strain, we could do this:

python3 transit.py zinb combined.wig samples.metadata prot.table output.file --interactions Strain

In this case, the condition is implicitly assumed to be the column in the samples metadata file
labeled ‘Condition’. If you want to specify a different column to use as the primary condition to
test (for example, if Treatment were a distinct column), you can use the --condition flag:

python3 transit.py zinb combined.wig samples.metadata prot.table output.file --condition Treatment --interactions Strain

The difference between how covariates and interactions are handeled in the model
is discussed below in the section on Statistical Significance.

Categorical vs Numeric Covariates

In some cases, covariates are intended to be treated as categorical
variables, like ‘batch’ or ‘library’ or ‘medium’.
In other cases, a covariate might be a numeric value, such as
‘time’ or ‘concentration’, in which the ordering of values is
relevant. The ZINB implementation tries to guess the type of each covariate.
If they are strings, they are treated as discrete factors (each with
their own distinct parameter). If the given covariate can
be parsed as numbers, the model interprets them as real values. In this
case, the covariate is treated as a linear factor (regressor), and is
incorporated in the model as a single coefficient, capturing the slope or
trend in the insertion counts as the covariate value increases.

Statistical Significance - What the P-values Mean in the ZINB Output

Formally, the P-value is from a likelihood ratio test (LRT) between a
condition-dependent ZINB model (\(m_1\)) and a
condition-independent (null) ZINB model (\(m_0\)).

\[2 \ ln \frac{L(m_1)}{L(m_0)} \sim \chi^2_{df}\]

where L(.) is the ZINB likelihood function, and \(\chi^2_{df}\) is
the chi-squared distribution with degrees of freedom (df) equal to
difference in the number of parameters bewteen the two models. The p-value is
calculated based on this distribution.

In a simple case where variability across a set of conditions X is being tested,
you can think of the model approximately as:

\[m_1: ln \ \mu = \alpha_0+\vec\alpha X\]

where \(\mu\) is an estimate of the mean (non-zero) insertion
count in a gene (a parameter in the likelihood function for ZINB),
\(\alpha_0\) is a constant (the mean across all
conditions), and \(\vec\alpha\) is a vector of coefficients
representing the deviation of the mean count in each condition.
(There is a corresponding equation for estimating the saturation as a
function of condition.)

To evaluate whether the variability across conditions is significant, we
compare to a null model, where the counts are estimated by the global mean only
(dropping the condition variable X).

\[m_0: ln \ \mu = \alpha_0\]

When a covariate C is available, it is incorporated in both models (additively),
to account for the effect of the covariate in \(m_1\). Coefficients in \(\vec\beta\)
represent systematic effects on the mean count due to the covariate, and effectively
get subtracted out of the condition coefficients, but \(\vec\beta\) is also
included in the null model \(m_0\), since we want to discount the effect of C on the
likelihood and focus on evaluting the effect of X.

\[\begin{align}\begin{aligned}m_1: ln \ \mu = \alpha_0 + \vec\alpha X + \vec\beta C\\m_0: ln \ \mu = \alpha_0 + \vec\beta C\end{aligned}\end{align} \]

When an interaction I is being tested, it is incorporated multiplicatively in
the main model \(m_1\) and additively in the null model \(m_0\):

\[\begin{align}\begin{aligned}m_1: ln \ \mu = \alpha_0 + \vec\alpha X + \vec\beta I + \vec\gamma X*I\\m_0: ln \ \mu = \alpha_0 + \vec\alpha X + \vec\beta I\end{aligned}\end{align} \]

The meaning of this is that the coefficients \(\vec\alpha\) and
\(\vec\beta\) capture the additive effects of how the mean
insertion count in a gene depends on the condition variable and the
interaction variable, respectively, and the X*I term captures
additional (non-additive) deviations (which is the traditional way
interactions are handled in generalized linear models, GLMs). Thus,
if there were no interaction, one would expect the mean in datasets
representing the combination of X and I to be predicted by the
offsets for each independently. To the extend that this is not the
case, we say that X and I interaction, and the coefficients
\(\gamma\) for X*I capture these deviations (non-additive
effects).

For example, think of condition X as Strain (e.g. wild-type vs mutant),
and interaction I as Treatment (e.g. treated versus control).
Then the main model would look like this:

\[m_1: ln \ \mu = \alpha_0 + \alpha_1 WT + \alpha_2 mutant + \beta_1 control + \beta_2 treated + \gamma mutant * treated\]

and this would be compared to the following null model (without the interaction term):

\[m_0: ln \ \mu = \alpha_0 + \alpha_1 WT + \alpha_2 mutant + \beta_1 control + \beta_2 treated\]

Output and Diagnostics

The ZINB method outputs a tab-delimited file with results for each
gene in the genome. P-values are adjusted for multiple comparisons using
the Benjamini-Hochberg procedure (called “q-values” or “p-adj.”). A
typical threshold for conditional essentiality on is q-value < 0.05.

	Column Header

	Column Definition

	Orf

	Gene ID.

	Name

	Name of the gene.

	TAs

	Number of TA sites in Gene

	Means…

	Mean read-counts for each condition

	LFCs…

	Log-fold-change (base 2) of mean insertion count relative to
mean across all conditions. Pseudo-counts of 5 are added.
If only 2 conditions, LFC is based on ratio of second to first.

	NZmeans…

	Mean read-counts at non-zero zites for each condition

	NZpercs…

	Saturation (percentage of non-zero sites) for each condition

	p-value

	P-value calculated by the ZINB test.

	p-adj

	Adjusted p-value controlling for the FDR (Benjamini-Hochberg)

	status

	Diagnositic information (explanation for genes not analyzed)

LFCs (log-fold-changes):
For each condition, the LFC is calculated as the log-base-2 of the
ratio of mean insertion count in that condition relative to the
mean of means across all the conditions.
Pseudocount are incorporated to reduce the impact of noise on LFCs, based on the formula below.
The pseudocounts can be adjusted using the -PC flag.
Changing the pseudocounts (via -PC) can reduce the artifactual appearance of genes with
high-magnitude LFCs but that have small overall counts (which are susceptible to noise).
Changing the pseudocounts will not affect the analysis of statistical significance and hence number of varying genes, however.

LFC = log2((mean_insertions_in_condition + PC)/(mean_of_means_across_all_conditions + PC))

Run-time

A typical run of the ZINB method takes ~5 minutes to analze a combined wig
file with 6 conditions, 3 replicates per condition. It will, of
course, run more slowly if you have many more conditions.

Normalization

Proper normalization is important as it ensures that other sources of
variability are not mistakenly treated as real differences in
datasets. TRANSIT provides various normalization methods, which are
briefly described below:

	
	TTR:

	Trimmed Total Reads (TTR), normalized by the total
read-counts (like totreads), but trims top and bottom 5% of
read-counts. This is the recommended normalization method for most cases
as it has the beneffit of normalizing for difference in
saturation in the context of resampling.

	
	nzmean:

	Normalizes datasets to have the same mean over the
non-zero sites.

	
	totreads:

	Normalizes datasets by total read-counts, and scales
them to have the same mean over all counts.

	
	zinfnb:

	Fits a zero-inflated negative binomial model, and then
divides read-counts by the mean. The zero-inflated negative
binomial model will treat some empty sites as belonging to the
“true” negative binomial distribution responsible for read-counts
while treating the others as “essential” (and thus not influencing
its parameters).

	
	quantile:

	Normalizes datasets using the quantile normalization
method described by Bolstad et al.
(2003) [http://www.ncbi.nlm.nih.gov/pubmed/12538238]. In this
normalization procedure, datasets are sorted, an empirical
distribution is estimated as the mean across the sorted datasets
at each site, and then the original (unsorted) datasets are
assigned values from the empirical distribution based on their
quantiles.

	
	betageom:

	Normalizes the datasets to fit an “ideal” Geometric
distribution with a variable probability parameter p. Specially
useful for datasets that contain a large skew. See Beta-Geometric Correction .

	
	nonorm:

	No normalization is performed.

Command-line

In addition to choosing normalization for various analyses in the GUI,
you can also call Transit to normalize wig files from the command-line,
as shown in this example:

Example

> python3 src/transit.py normalize --help

usage: python3 src/transit.py normalize <input.wig> <output.wig> [-n TTR|betageom]
 or: python3 src/transit.py normalize -c <combined_wig> <output> [-n TTR|betageom]

> python3 src/transit.py normalize Rv_1_H37RvRef.wig Rv_1_H37RvRef_TTR.wig -n TTR

> python3 src/transit.py normalize Rv_1_H37RvRef.wig Rv_1_H37RvRef_BG.wig -n betageom

The normalize command now also works on combined_wig files too.
If the input file is a combined_wig file, indicate it with a ‘-c’ flag.

Pathway Enrichment Analysis

Pathway Enrichment Analysis provides a method to
identify enrichment of functionally-related genes among those that are
conditionally essential (i.e.
significantly more or less essential between two conditions).
The analysis is typically applied as post-processing step to the hits identified
by a comparative analysis, such as resampling.
Several analytical method are provided:
Fisher’s exact test (FET, hypergeometric distribution), GSEA (Gene Set Enrichment Analysis)
by Subramanian et al (2005) [https://www.ncbi.nlm.nih.gov/pubmed/16199517],
and Ontologizer [https://www.ncbi.nlm.nih.gov/pubmed/17848398].
For Fisher’s exact test,
genes in the resampling output file with adjusted p-value < 0.05 are taken as hits,
and evaluated for overlap with functional categories of genes.
The GSEA methods use the whole list of genes, ranked in order of statistical significance
(without requiring a cutoff), to calculate enrichment.

Three systems of categories are provided for (but you can add your own):
the Sanger functional categories of genes determined in the
original annotation of the H37Rv genome (Cole et al, 1998 [https://www.ncbi.nlm.nih.gov/pubmed/9634230],
with subsequent updates),
COG categories (Clusters of Orthologous Genes [https://www.ncbi.nlm.nih.gov/pubmed/25428365]) and
also GO terms (Gene Ontology). The supporting files for M. tuberculosis
H37Rv are in the src/pytransit/data/ directory.

For other organisms, it might be possible to download COG categories from
http://www.ncbi.nlm.nih.gov/COG/
and GO terms from http://www.geneontology.org
or http://patricbrc.org.
If these files can be obtained for your organism, they will have to be converted into
the associations file format described below. (The pathways files for COG categories and GO terms
in the Transit data directory should still work, because they just encode pathways names for all terms/ids.)

At present, pathway enrichment analysis is only implemented as a command-line function,
and is not available in the Transit GUI.

Usage

python3 src/transit.py pathway_enrichment <resampling_file> <associations> <pathways> <output_file> [-M <FET|GSEA|ONT>] [-PC <int>]

Parameters

	
	Resampling File

	The resampling file is the one obtained after using the resampling method in Transit. (It is a tab separated file with 11 columns.) GSEA method makes usage of the last column (adjusted P-value)

	
	Associations File

	This is a tab-separated text file with 2 columns: pathway id, and pathway name. If a gene is in multiple pathways, the associated ids should be listed on separate lines. It is OK if there are no associations listed for some genes. Important: if pathways are hierarchical, you should expand this file to explicitly include associations of each gene with all parent nodes. Files with GO term associations will have to be pre-processed this way too.

Example: H37Rv_sanger_roles.dat

Rv3823c II.C.4
Rv3823c II.C
Rv3823c II
Rv0337c I.D.2
Rv0337c I.D
Rv0337c I
...

	
	Pathways File

	This is a tab-separated text file with 2 columns: pathway id, and pathway name.

Example: sanger_roles.dat

I Small-molecule metabolism
I.A Degradation
I.A.1 Carbon compounds
I.A.2 Amino acids and amines
I.A.3 Fatty acids
I.A.4 Phosphorous compounds
...

	
	-M

	Methodology to be used. FET is used by default (even without specifying -M).

	FET

	This implements Fisher’s Exact Test (hypergeometric distribution) to determine a p-value for each pathway, based on the proportion of pathway member observed in list of hits (conditionally essential gene by resampling, padj<0.05) compared to the background proportion in the overall genome, and p-values are adjusted post-hoc by the Benjamini-Hochberg procedure to limit the FDR to 5%.

In the output file, an “enrichment score” is reported, which is the ratio of the observed number of pathway members among the hits to the expected number. Pseudocounts of 2 are included in the calculation to reduce the bias toward small pathways with only a few genes; this can be adjusted with the -PC flag (below).

FET can be used with GO terms.

Additional flags for FET:

	-PC <int>: Pseudocounts used in calculating the enrichment score and p-value by hypergeometic distribution. Default: PC=2.

	GSEA

	Gene Set Enrichment Analysis. GSEA assess the significance of a pathway by looking at how the members fall in the ranking of all genes. The genes are first ranked by significance from resampling. Specifically, they are sorted by signed-log-p-value, SLPV=sign(LFC)*(log(pval)), which puts them in order so that the most significant genes with negative LFC are at the top, the most significant with positive LFC are at the bottom, and insignificant genes fall in the middle. Roughly, GSEA computes the mean rank of pathway members, and evaluates significance based on a simulated a null distribution. p-values are again adjusted at the end by BH.

Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., … & Mesirov, J. P. (2005). `ene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences, 102(43), 15545-15550. [http://www.pnas.org/content/102/43/15545.short]

GSEA can be used with GO terms.

Additional flags for GSEA:

	-ranking SLPV|LFC: method used to rank all genes; SLPV is signed-log-p-value (default); LFC is log2-fold-change from resampling

	-p <float>: exponent to use in calculating enrichment score; recommend trying ‘-p 0’ (default) or ‘-p 1’ (as used in Subramaniam et al, 2005)

	-Nperm <int>: number of permutations to simulate for null distribution to determine p-value (default=10000)

	ONT

	Ontologizer is a specialized method for GO terms that takes parent-child relationships into account among nodes in the GO hierarchy. This can enhance the specificity of pathways detected as significant. (The problem is that there are many GO terms in the hierarchy covering similar or identical sets of genes, and often, if one node is significantly enriched, then several of its ancestors will be too, which obscures the results with redundant hits; Ontologizer reduces the significance of nodes if their probability distribution among hits can be explained by their parents.) Hierarhical relationships among GO terms are encoded in an OBO file, which is included in the src/pytransit/data/ directory.

Grossmann S, Bauer S, Robinson PN, Vingron M. Improved detection of overrepresentation of Gene-Ontology annotations with parent child analysis. Bioinformatics. 2007 Nov 15;23(22):3024-31. [https://www.ncbi.nlm.nih.gov/pubmed/17848398]

Auxilliary Pathway Files in Transit Data Directory

These files for pathway analysis are distributed in the Transit data directory
(e.g. transit/src/pytransit/data/).

	system

	num cats

	applicable methods

	associations of genes with roles

	pathway definitions/role names

	COG

	20

	FET*, GSEA

	H37Rv_COG_roles.dat

	COG_roles.dat

	Sanger

	153

	FET*, GSEA*

	H37Rv_sanger_roles.dat

	sanger_roles.dat

	GO

	2545

	FET, GSEA

	H37Rv_GO_terms.txt

	GO_term_names.dat

	
	
	ONT*

	GO_terms_for_each_Rv.obo-3-11-18.txt

	gene_ontology.1_2.3-11-18.obo

asterisk means ‘recommended’ combination of method with system of functional categories

Current Recommendations

Here are the recommended combinations of pathway methods to use for different systems of functional categories:

	For COG, use ‘-M FET’

	For Sanger roles, try both FET and GSEA

	For GO terms, use ‘M -ONT’

Examples

uses Fisher's exact test by default (with PC=2 as pseudocounts)
> transit pathway_enrichment resampling_glyc_chol.txt $DATA/H37Rv_sanger_roles.dat $DATA/sanger_roles.dat pathways_glyc_chol_Sanger.txt

can do this with GO terms too
> transit pathway_enrichment resampling_glyc_chol.txt $DATA/H37Rv_GO_terms.txt $DATA/GO_term_names.dat pathways_glyc_chol_GO.txt

with COG categories
> transit pathway_enrichment resampling_glyc_chol.txt $DATA/H37Rv_COG_roles.dat $DATA/COG_roles.dat pathways_glyc_chol_COG.txt

can also do GSEA method (on any system of functional categories)
> transit pathway_enrichment resampling_glyc_chol.txt $DATA/H37Rv_sanger_roles.dat $DATA/sanger_roles.dat pathways_Sanger_GSEA.txt -M GSEA

Ontologizer is a specialized method for GO terms
> transit pathway_enrichment resampling_glyc_chol.txt $DATA/H37Rv_GO_terms.txt $DATA/GO_term_names.dat pathways_Ontologizer.txt -M ONT

The $DATA environment variable in these examples refers to the Transit data directory, e.g. src/pytransit/data/.

tnseq_stats

You can generate the same table to statistics as on the Quality Control panel in the GUI
from the command-line using the ‘tnseq_stats’ command. Here is an example:

> python3 src/transit.py tnseq_stats --help

usage: python3 src/transit.py tnseq_stats <file.wig>+ [-o <output_file>]
 python3 src/transit.py tnseq_stats -c <combined_wig> [-o <output_file>]

> python3 src/transit.py tnseq_stats -c src/pytransit/data/cholesterol_glycerol_combined.dat

dataset density mean_ct NZmean NZmedian max_ct total_cts skewness kurtosis
src/pytransit/data/cholesterol_H37Rv_rep1.wig 0.44 139.6 317.6 147 125355.5 10414005.0 54.8 4237.7
src/pytransit/data/cholesterol_H37Rv_rep2.wig 0.44 171.4 390.5 148 704662.8 12786637.9 105.8 14216.2
src/pytransit/data/cholesterol_H37Rv_rep3.wig 0.36 173.8 484.2 171 292294.8 12968502.500000002 42.2 2328.0
src/pytransit/data/glycerol_H37Rv_rep1.wig 0.42 123.3 294.5 160 8813.3 9195672.4 4.0 33.0
src/pytransit/data/glycerol_H37Rv_rep2.wig 0.52 123.8 240.1 127 8542.5 9235984.2 4.0 33.5

corrplot

A useful tool when evaluating the quality of a collection of TnSeq datasets is to make a
correlation plot of the mean insertion counts (averaged at the gene-level) among samples.
While it is difficult to state unequivocally
how much correlation there should be between samples from different conditions
(or even between replicates of the same condition),
the corrplot can often reveal individual samples which stand out as being far less
correlated with all the others (which subsequently might be excluded from analyses).

Note: The corrplot command calls R, which must be installed on your system,
and relies on the ‘corrplot’ R package.
See Installation Instructions.

Usage:

python3 src/transit.py corrplot <mean_counts> <output.png> [-anova|-zinb]

The simplest usage is without the flags at the end.
The mean_counts file is generated by the ‘export mean_counts’ command, and gives
the mean insertion count for each gene in each sample.

Here is an example of making a corrplot:

> transit corrplot glyc_chol_combined.wig.txt glyc_chol_corrplot.png
correlations based on 3990 genes

[image: _images/glyc_chol_corrplot.png]
A corrplot can also be generated from the output of ANOVA or ZINB
analysis, showing relationships among the conditions themselves
(i.e. with replicates merged, rather than correlations among
individual samples). Importantly, the correlations are based only on
the subset of genes identified as significantly varying (Padj <
0:05) in order to enhance the patterns, since otherwise they would be
washed out by the rest of the genes in the genome, the majority of
which usually do not exhibit significant variation in counts.

Here is an example which generates the following image showing the corrplot among
several different growth conditions:

> python3 src/transit.py corrplot anova_iron.txt iron_corrplot_anova.png -anova
correlations based on 229 genes

[image: _images/iron_corrplot_anova.png]
Note that is an ANOVA or ZINB output file (both of which contain mean
counts for each gene in each condition) is supplied in place of
mean_counts, the last argument of corrplot must be set to either
‘-anova’ or ‘-zinb’ to indicate the type of file being provided as the
first argument.

Note: corrplot requires R (statistical analysis software)
to be installed on your system. See Installation Instructions.

heatmap

The output of ANOVA or ZINB can be used to generate a heatmap that
simultaneously clusters the significant genes and clusters the conditions,
which is especially useful for shedding light on the relationships
among the conditions apparent in the data.

Note: The heatmap command calls R, which must be installed on your system,
and relies on the ‘gplots’ R package.
See Installation Instructions.

Usage:

python3 src/transit.py heatmap <anova_or_zinb_output> <heatmap.png> -anova|-zinb [-topk <int>] [-qval <float]

Note that the first optional argument (flag) is required to be either ‘-anova’ or ‘-zinb’, a flag to
indicate the type of file being provided as the second argument.

By default, genes are selected for the heatmap based on qval<0.05.
However, the user may change the selection of genes through 2 flags:

	-qval <float>: change qval threshold for selecting genes (default=0.05)

	-topk <int>: select top k genes ranked by significance (qval)

Here is an example which generates the following image showing the similarities among
several different growth conditions:

> python3 src/transit.py heatmap anova_iron.txt heatmap_iron_anova.png -anova

[image: _images/iron_heatmap_anova_rotated.png]
Importantly, the heatmap is based only on the subset of genes
identified as significantly varying (Padj < 0:05, typically only a few
hundred genes) in order to enhance the patterns, since otherwise they would
be washed out by the rest of the genes in the genome, the majority of
which usually do not exhibit significant variation in counts.

Console Mode Cheat-Sheet

TRANSIT has the capability of running in Console mode, without
depending on libraries for GUI elements. More hands-on users
can utilize transit in this manner to quickly run multiple
jobs in parallel. Below is brief

Analysis Methods

TRANSIT has the capacity of determining essentiality within a
single condition, or between conditions to determine
conditional essentiality.

Single Condition Essentiality

Analysis methods in a single condition require at least 4
positional arguments followed by optional flags.

python transit.py <method> <wig-files> <annotation> <output>

	Positional Arguments

	Definition

	<method>

	Short name of the desired analysis method e.g. gumbel, resampling, hmm

	<wig-files>

	Comma-separated list of paths read-count datasets in .wig format

	<annotation>

	Path to the annotation in .prot_table or .GFF3 format.

	<output>

	Desired path and name of the output file

Example

python transit.py gumbel glycerol_H37Rv_rep1.wig,glycerol_H37Rv_rep2.wig H37Rv.prot_table glycerol_TTR.txt -r Sum -s 10000

Conditional Essentiality

Analysis methods between two conditions require at least 5
positional arguments followed by optional flags.

	Positional Arguments

	Definition

	<method>

	Short name of the desired analysis method e.g. gumbel, resampling, hmm

	<control-files>

	Comma-separated list of paths read-count files in .wig format for the control datasets

	<experimental-files>

	Comma-separated list of paths read-count files in .wif format for the experimental datasets

	<annotation>

	Path to the annotation in .prot_table or .GFF3 format.

	<output>

	Desired path and name of the output file

Example

python transit.py resampling glycerol_H37Rv_rep1.wig,glycerol_H37Rv_rep2.wig cholesterol_H37Rv_rep1.wig,cholesterol_H37Rv_rep2.wig H37Rv.prot_table glycerol_TTR.txt -n TTR -s 10000

Normalizing datasets

TRANSIT also allows users to normalize datasets and export them afterwards. To normalize datasets, 3 positional arguments followed by optional flags.

Positional Arguments

	Positional Arguments

	Definition

	<wig-files>

	Comma-separated list of paths read-count datasets in .wig format

	<annotation>

	Path to the annotation in .prot_table or .GFF3 format.

	<output>

	Desired path and name of the output file

Optional Arguments

	Argument

	Definition

	-n <String>

	Short name of the normalization method, e.g. -n TTR

Example

python transit.py norm glycerol_H37Rv_rep1.wig,glycerol_H37Rv_rep2.wig H37Rv.prot_table glycerol_TTR.txt -n TTR

Tutorial: Genetic Interactions Analysis

The feature implements the method derscribed in the following publication:

DeJesus, M.A., Nambi, S., Smith, C.M., Baker, R.E., Sassetti, C.M.,
and Ioerger, T.R. (2017). Statistical Analysis of Genetic Interactions
in TnSeq Data. Nucleic Acids Research, 45(11):e93. [https://www.ncbi.nlm.nih.gov/pubmed/28334803]

To illustrate how TRANSIT can be used to analyze genetic interactions,
we are going to go through a tutorial where we analyze datasets of
M. tuberculosis in two different strain backgrounds (H37Rv, and
delta-Rv2680 mutant), grown under two different conditions each
(in-vivo day 0, and in-vivo day 32).

This tutorial provides instructions to accomplish the analysis in
either Console Mode or GUI Mode.

Console Mode Tutorial

The Genetic Interactions (GI) method can be run in Console Mode without
the need of the graphical interface. One can get an idea of how to run
the method as well as the necessary and optional arguments by simply
running the following command:

python PATH/src/transit.py gi

In this tutorial, we’re analyzing datasets of M. tuberculosis in
the H37Rv reference strain and a delta-Rv2680 mutant strain, grown under two
different conditions each (in-vivo day 0, and in-vivo day 32). The method
requires the comma-separated lists to the path of the .wig files.

	The first list corresponds to the Control datasets in the first condition (i.e. H37Rv at day 0)

	The second list corresponds to the Control datasets in the second condition (i.e. H37Rv at day 32)

	The third list corresponds to the Experimental datasets in the first condition (i.e. delta-Rv2680 at day 0)

	The fourth list corresponds to the Experimental datasets in the second condition (i.e. delta-Rv2680 at day 32)

Below is an example command to run this analysis, assuming the files are in the same
directory where the files are located:

python PATH/src/transit.py gi H37Rv_day0_rep1.wig,H37Rv_day0_rep2.wig H37Rv_day32_rep1.wig,H37Rv_day32_rep2.wig,H37Rv_day32_rep3.wig Rv2680_day0_rep1.wig,Rv2680_day0_rep2.wig Rv2680_day32_rep1.wig,Rv2680_day32_rep2.wig,Rv2680_day32_rep3.wig H37Rv.prot_table results_gi_Rv2680.dat -s 10000

GUI Mode Tutorial

Run TRANSIT

Navigate to the directory containing the TRANSIT files, and run
TRANSIT (or run ‘transit’ if you installed as a package):

python PATH/src/transit.py

Adding the annotation file

Before we can analyze datasets, we need to add an annotation file for
the organism corresponding to the desired datasets. Click on the file
dialog button, on the top of the TRANSIT window (see image below), and
browse and select the appropriate annotation file. Note: Annotation
files must be in “.prot_table” or GFF3 format.

[image: _images/transit_tutorial_annotation.png]

Adding datasets grown under condition A

The analysis of genetic interactions requires four sets of data.
The TRANSIT interface allows for two sets of data at a time:
Control and Experimental. For the purposes of genetic interactions,
the initial set will represent the two strains under the first
condition.

Adding the control datasets in condition A

In this context, the Control datasets in the first condition are the
datasets for the H37Rv reference strain at day 0. To add these,
we click on the control sample file dialog (see image below), and
select the desired datasets (one by one). In this example, we have two replicates:

[image: _images/transit_tutorial_gi_control_A.png]
As we add the datasets they will appear in the table in the Control
samples section. This table will provide the following statistics
about the datasets that have been loaded so far: Total Number of
Reads, Density, Mean Read Count and Maximum Count. These statistics
can be used as general diagnostics of the datasets.

Adding the experimental datasets in condition A

We now repeat the process we did for control samples, for the
experimental datasets. In this tutorial, the experimental datasets
come from the Knock0out strain, delta-Rv2680, and the first condition,
in-vivo day 0. To add these, we click on the experimental sample file dialog
(see image below), and select the desired datasets (one by one).
In this example, we have
two replicates:

[image: _images/transit_tutorial_gi_experimental_A.png]

Running the Genetic Interactions method

We are now ready to proceed with the genetic interactions (GI)
method in TRANSIT. In the menu bar, click on Analysis =>
[gi] to selected the GI method. The panel on the right-hand
side will populate with options. The analysis of genetic interactions
requires four sets of data. After you are done setting
these options are desired, click on the “Run GI” button. This will open
a new window that will allow you to add the remaining two
sets of data grown under the second condition:

[image: _images/transit_tutorial_gi_method.png]

Adding the control datasets in condition B

In this context, the Control datasets in the second condition (B) are
the datasets for the H37Rv reference strain at day 0. To add these,
we click on the control sample file dialog in the window that opened
after clicking the “Run” button (see image below), and
select the desired datasets (one by one).
In this example, we have three replicates:

[image: _images/transit_tutorial_gi_control_B.png]
As we add the datasets they will appear in the table in the Control
samples section. This table will provide the following statistics
about the datasets that have been loaded so far: Total Number of
Reads, Density, Mean Read Count and Maximum Count. These statistics
can be used as general diagnostics of the datasets.

Adding the experimental datasets in condition B

We now repeat the process we did for control samples, for the
experimental datasets. In this tutorial, the experimental datasets
come from the Knock0out strain, delta-Rv2680, and the first condition,
in-vivo day 32. To add these, we click on the experimental sample file dialog
(see image below), and select the desired datasets (one by one).
In this example, we have
two replicates:

[image: _images/transit_tutorial_gi_experimental_B.png]

Viewing GI results

Once TRANSIT finishes running, the results file will automatically be
added to the Results Files section at the bottom of the window.
To view the actual results, we can open the file in a new window by
selecting it from the list and clicking on the “Display Table” button.

The newly opened window will display a table of the results. We can
sort the results by clicking on the column header. For example, to
focus on the genes that are most likely to be interacting with Rv2680
(i.e. the gene Knocked out) we can click on the column header
labeled “Type of Interaction”, which represents the final classification
by the GI method.

You can also sort by “Mean delta logFC” to see the estimated change
in enrichment between the two strains and conditions.

Tutorial: Normalize datasets

TRANSIT has the capability to normalize datasets with different methods,
and export them to IGV from the Broad Institute [https://www.broadinstitute.org/igv/]
or a CombinedWig format. This tutorial shows a quick overview of how
to normalize datasets save them using the GUI mode of transit or through
the Console mode.

Adding the annotation file

Before we can normalize .wig datasets, we need to add an
annotation file for the organism. Click on the file dialog button, on
the top of the TRANSIT window (see image below), and browse and select
the appropriate annotation file. Note: Annotation files must be in
“.prot_table” or GFF3 format, described above:

[image: _images/transit_tutorial_annotation.png]

Add .wig datasets

Next we must choose to add .wig formatted datasets what we wish to
normalize to CombinedWig format. To add these, we click on the control sample
file dialog (see image below), and select the desired datasets (one by
one). In this example, we have two replicates:

[image: _images/transit_tutorial_control_datasets.png]
As we add the datasets they will appear in the table below. Select the datasets
you wish to normalize.

Normalize and Save

After you have selected the desired datasets in the list of datasets added,
click on “Export -> Selected Datasets” in the menu bar at the top of the TRANSIT
window, and select the format you desire (e.g. “to IGV” or “to CombinedWig”).
You will be prompted to pick a normalization method, and a filename.
Note: Only selected datasets (“Control+Click”) will be normalized and
saved.

[image: _images/transit_tutorial_norm_options.png]

Normalization

Proper normalization is important as it ensures that other sources of variability are not mistakenly treated
as real differences in datasets. TRANSIT provides various normalization methods, which are briefly described below:

	
	TTR:

	Trimmed Total Reads (TTR), normalized by the total
read-counts (like totreads), but trims top and bottom 5% of
read-counts. This is the recommended normalization method for most cases
as it has the beneffit of normalizing for difference in
saturation in the context of resampling.

	
	nzmean:

	Normalizes datasets to have the same mean over the
non-zero sites.

	
	totreads:

	Normalizes datasets by total read-counts, and scales
them to have the same mean over all counts.

	
	zinfnb:

	Fits a zero-inflated negative binomial model, and then
divides read-counts by the mean. The zero-inflated negative
binomial model will treat some empty sites as belonging to the
“true” negative binomial distribution responsible for read-counts
while treating the others as “essential” (and thus not influencing
its parameters).

	
	quantile:

	Normalizes datasets using the quantile normalization
method described by Bolstad et al.
(2003) [http://www.ncbi.nlm.nih.gov/pubmed/12538238]. In this
normalization procedure, datasets are sorted, an empirical
distribution is estimated as the mean across the sorted datasets
at each site, and then the original (unsorted) datasets are
assigned values from the empirical distribution based on their
quantiles.

	
	betageom:

	Normalizes the datasets to fit an “ideal” Geometric
distribution with a variable probability parameter p. Specially
useful for datasets that contain a large skew.

	
	nonorm:

	No normalization is performed.

Tutorial: Export datasets

TRANSIT has the capability to export .wig files into different formats.
This tutorial shows a quick overview of how to export to the IGV format.
This can be useful to be able to import read-count data into
IGV from the Broad Institute [https://www.broadinstitute.org/igv/] and use
its visualization capabilities.

Adding the annotation file

Before we can export .wig datasets to IGV format, we need to add an
annotation file for the organism. Click on the file dialog button, on
the top of the TRANSIT window (see image below), and browse and select
the appropriate annotation file. Note: Annotation files must be in
“.prot_table” or GFF3 format, described above:

[image: _images/transit_tutorial_annotation.png]

Add .wig datasets

Next we must choose to add .wig formatted datasets what we wish to
export to IGV format. To add these, we click on the control sample
file dialog (see image below), and select the desired datasets (one by
one). In this example, we have two replicates:

[image: _images/transit_tutorial_control_datasets.png]
As we add the datasets they will appear in the table below.

Export to IGV

Finally, to export the datasets we click on “Export” in the menu bar
at the top of the TRANSIT window, and select the option that matches
which datasets we wish to export. Note: Only selected datasets
(“Control+Click”) will be exported.

[image: _images/transit_export_options.png]

TPP Overview

TPP is a software tool for processing raw reads (e.g. .fastq files,
untrimmed) from an Tn-Seq experiment, extracting counts of transposon
insertions at individual TA dinucleotides sites in a genome (“read
counts”, or more specifically “template counts”, see below), and writing
this information out in
.wig [http://genome.ucsc.edu/goldenpath/help/wiggle.html] format
suitable for input to TRANSIT. In addition, TPP
calculates some useful statistics and diagnostics on the dataset.

There are many way to do pre-processing of Tn-Seq datasets, and it can
depend on the the protocol used for Tn-Seq, the conventions used by the
sequencing center, etc. However, TPP is written to accommodate the most
common situation among our collaborating labs. In particular, it is
oriented toward the Tn-Seq protocol developed in the Sassetti lab and
described in (Long et al,
2015) [http://www.springer.com/biomed/human+genetics/book/978-1-4939-2397-7],
which uses a barcoding system to uniquely identifying reads from
distinct transposon-junction DNA fragments. This allows raw read counts
to be reduced to unique template counts, eliminating effects of PCR
bias. The sequencing must be done in paired-end (PE) mode (with a
minimum read-length of around 50 bp). The transposon terminus appears in
the prefix of read1 reads, and barcodes are embedded in read2 reads.

The suffixes of read1 and read2 contain nucleotides from the genomic
region adjacent to the transposon insertion. These subsequences must be
mapped into the genome. TPP uses
BWA [http://bio-bwa.sourceforge.net/] (Burroughs-Wheeler Aligner) to
do this mapping. It is a widely-used tool, but you will have to install
it on your system. Mapping large datasets takes time, on the order of 15
minutes (depending on many factors), so you will have to be patient.

Subsequent to the BWA mapping step, TPP does a bunch of post-processing
steps. Primarily, it tabulates raw read counts at each TA site in the
reference genome, reduces them to template counts, and writes this out
in .wig format (as input for TRANSIT). It also calculates and reports
some statistics on the dataset which a useful for diagnostic purposes.
These are saved in local file caled “.tn_stats”. The GUI automatically
reads all the .tn_stats files from previously processed datasets in a
directory and displays them in a table.

The GUI interface is set-up basically as a graphical front-end that
allows you to specify input files and parameters to get a job started.
Once you press START, the graphical window goes away, and the
pre-processing begins, printing out status messages in the original
terminal window. You can also run TPP directly from the command-line
with the GUI, by providing all the inputs via command-line arguments.

TPP has a few optional parameters in the interface. We intend to add
other options in the future, so if you have suggestions, let us know. In
particular, if you have some datasets that requires special processing
(such as if different primer sequences were used for PCR amplification,
or a different barcoding system, or different contaminant sequences to
search for, etc.), we might be able to add some options to deal with
this.

Installation

TPP should work equivalently on Macs, PCs running Windows, or Unix
machines. TPP is fundamentally a python script that has a graphical user
interface (GUI) written in wxPython. Its major dependency is that it
calls BWA to map reads. TPP is packaged as a part of TRANSIT.

See: Transit/TPP installation

	Requirements (in addition to TRANSIT requirement):

	
	BWA version 0.7.12 [http://bio-bwa.sourceforge.net/] (can put
this directory anywhere; be sure to run ‘make’ to build bwa executable
pre-compiled version for 64-bit Windows [http://saclab.tamu.edu/essentiality/transit/bwa-0.7.12_windows.zip])

Since TPP is a python script, there is nothing to compile or ‘make’.

Running TPP

TPP may be run from the command line (e.g. of a terminal window or
shell) by typing:

python PATH/src/tpp.py

If installed as PyPI package
tpp

where PATH is the path to the TRANSIT installation directory. This
should pop up the GUI window, looking like this…

[image: _images/TPP-screenshot.png]
Note, TPP can process paired-end reads, as well as single-end datasets.
(just leave the filename for read2 blank)

The main fields to fill out in the GUI are…

	Reference genome - This is the sequence in Fasta format against which
the reads will be mapped. The reference genome may contain multiple
contigs (hence a ‘multi-fasta’ file, with multiple headers starting with ‘>’),
or in fact may include a comma-separated list of fasta files.

	Replicon ids - If your genome sequence has only one contig (the usual case),
you don’t have to do anthing here (leave blank). If you have mutiple contigs
(e.g. multiple chomosomes, or plasmids included, etc.), you can give them
unqiue labels/ids as a comma-separated list. This will be used as filename
suffixes for the output .wig files (a separate file with insertion counts
at TA sites for each replicon). If you have many (anonymous) contigs, e.g.
from a de novo assembly, you can enter ‘auto’ in this field, and it will generate
numerical ids for filename suffixes, 1,2…n for however many contigs are in
the file.

	Reads1 file - This should be the raw reads file (untrimmed) for
read1 in FASTQ [http://en.wikipedia.org/wiki/FASTQ_format] or
FASTA [http://en.wikipedia.org/wiki/FASTA] format, e.g.
DATASET_NAME_R1.fastq

	Note: you can also supply gzipped files for reads, e.g.
*.fastq.gz

	Reads2 file - this should be the raw reads file (untrimmed) for
read2 in FASTQ or FASTA format, e.g. DATASET_NAME_R2.fastq

	Note: if you leave read2 blank, it will process the dataset as
single-ended. Since there are no barcodes, each read will be
counted as a unique template.

	Prefix - base to use for output filenames (for the multiple intermediate files that
will get generated in the process)

	Protocol used - Currently, the following TnSeq sample prep protocols are supported.
These set the default transposon and primer sequence that are
typically used with each protocol (which can be overridden by -primer), and have a few minor
differences in processing reads.

	Sassetti - DNA is sheared into fragments, sequencing adapters are ligated, and
then transposon:genomic junctions are amplified by PCR.
Thus a portion (~20bp) of the Himar1 terminus appears as a prefix in the
reads, which is stripped off prior to mapping to genome. Also, read 2 contains a
random nucleotide barcode, which is used to reduce read counts at TA sites to unique template
counts, which reduces noise. See Long et al. (2015) [http://www.springer.com/biomed/human+genetics/book/978-1-4939-2397-7].

	Tn5 - This is a different transposon than Himar1. The main difference between Tn5 and Himar1
is that it is not restricted to insertions at TA dinucleotides, and can insert
randomly anywhere in the genome. In principle, this could result in higher saturation
(more insertions per gene; insertions at hundreds of thousands of sites are common).
Thus the .wig files generated list insertion counts at every coordinate genome-wide
(not just TA sites), though most counts are still 0.
Analysis of Tn5 datasets has some unique challenges, which are discussed in
Transit Methods.
See Langridge et al. (2009) [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2792183/].

	Mme1 - This can be used with a variant of the Himar1 transposon, but the
method of selecting and amplifying transposon:genomic junctions is different.
The Mme1 (or MmeI) restriction enzyme is used to recognize a site in the terminus of
the transposon, and makes a cut 18-20bp downstream into the genomic region.
Thus the reads are much shorter, and also there
is no need for read2 (these are typically single-ended datasets).
For now, most users pre-trim their raw reads down to 16-20bp by using another tool
to strip off the transposon prefix and adapter suffix.
If you do this, you should set your primer sequence to “” in TPP.
See
Santiago et al. (2015) [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4389836/].

	Transposon used - Himar1 is assumed by default, but you can set it to
Tn5 to process libraries of that type. The main consequences of this
setting are: 1) the selected transposon determines the nucleotide
prefix to be recognized in read 1, and 2) for Himar1, reads are
counted only at TA sites, whereas for Tn5, reads are counted at ALL
sites in the genome (since it does not have significant sequence
specificity) and written out in the .counts and .wig files.

	Primer sequence - This represents the end of the transposon that
appears as a constant prefix in read 1 (possibly shifted by a few
random bases), resulting from amplifying transposon:genomic junctions.
TPP searches for this prefix and strips it off, to
map the suffixes of reads into the genome. TPP has default sequences
defined for both Himar1 and Tn5 data, based on the most commonly
used protocols (Long et al. (2015) [http://www.springer.com/biomed/human+genetics/book/978-1-4939-2397-7]; Langridge et al. (2009) [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2792183/]). However, if you amplify junctions with a different
primer, this field gives you the opportunity to change the sequence
TPP searches for in each read. Note that you should not
enter the ENTIRE primer sequence, but rather just
the part of the primer sequence that will show up at the beginning
of every read. If you preprocess your reads by trimming off the 5’ transposon
prefixes, you could set this to blank, and TPP will process all your reads; but
we don’t recommend doing it this way.

	Max reads - Normally, leave this blank by default, and TPP will
process all reads. However, if you want to do a quick run on a subset
of the data, you can select a smaller number. This is mainly for
testing purposes.

	Mismatches - this is for searching for the sequence patterns in reads
corresponding to the transposon prefix in R1 and the constant adapter
sequences surrounding the barcode in R2; we suggest using a default
value of 1 mismatch

	Primer start window - a pair of integers separated by a comma (P,Q), which constrains
the location in the read to search for the start of the primer sequence; default
is set to 0,20 (which is typically where it will be found for samples prepared
using the Sassetti protocol, i.e. near the beginning of reads, with some small
random shifts)

	BWA executable - you’ll have to find the path to where the executable is installed

	BWA algorithm - there are 2 options: ‘aln’ and ‘mem’. ‘aln’ was originally used in Transit,
but the default has now been switched to ‘mem’, which should be able to map more reads

	BWA flags - if you want to pass through options to BWA

	BarSeq Catalog - this is not finished yet, but we are working on it. Stay tuned…

Once you have filled all these fields out, you can press START (or
QUIT). At this point the GUI window will disappear, and the data
processing commences in the original terminal/shell windows. It prints
out a lot of information to let you know what it is doing (and error
messages, if anything goes wrong). Many intermediate files get
generated. It takes awhile (like on the order of 15 minutes), most of
which is taken up by the mapping-reads step by BWA.

Subsequent to the BWA mapping step, TPP does a bunch of post-processing
steps. Primarily, it tabulates raw read counts at each TA site in the
reference genome, reduces them to template counts, and writes this out
in .wig format (as input for essentiality analysis in TRANSIT). It also
calculates and reports some statistics on the dataset which a useful for
diagnostic purposes. These are saved in local file caled
“.tn_stats”. The GUI automatically reads all the .tn_stats files
from previously processed datasets in a directory and displays them in a
table.

TPP uses a local config file called “tpp.cfg” to remember parameter
settings from run to run. This makes it convenient so that you don’t
have to type in things like the path to the BWA executable or reference
genome over and over again. You just have to do it once, and TPP will
remember.

Command-line mode: TPP may be run on a dataset directly from the
command-line without invoking the user interface (GUI) by providing it
filenames and parameters as command-line arguments.

> python tpp.py --help

usage: python PATH/src/tpp.py -bwa <EXECUTABLE_WITH_PATH> -ref <fasta-file|comma_separated_list> -reads1 <FASTQ_OR_FASTA_FILE> [-reads2 <FASTQ_OR_FASTA_FILE>] -output <BASE_FILENAME> [OPTIONAL ARGS]
OPTIONAL ARGS:
-protocol [Sassetti|Tn5|Mme1] # which sample prep protocol was used?; sassetti protocol is the default; this sets the default transposon and primer sequence
-primer <seq> # prefix of reads corresponding to end of transposon at junction with genomic sequence; can override default seq
-maxreads <INT>
-mismatches <INT> # when searching for constant regions in reads 1 and 2; default is 1
-flags "<STRING>" # args to pass to BWA
-primer-start-window INT,INT # position in read to search for start of primer; default is [0,20]
-window-size INT # automatic method to set window
-barseq_catalog_in|-barseq_catalog_out <file>
-replicon-ids <comma_separated_list_of_names> # if multiple replicons/genomes/contigs/sequences were provided in -ref, give them names.
 # Enter 'auto' for autogenerated ids.

The input arguments and file types are as follows:

	Flag

	Value

	Comments

	-bwa

	path executable

	

	-bwa-alg

	‘mem’ (default) or ‘aln’ (the old way)

	

	-flag

	parameters to pass to BWA

	

	-ref

	reference genome sequence

	FASTA file or comma-separated list of files

	-replicon-ids

	comma-separated list of names to use for contigs

	necessary only if genome seq has multiple contigs.
Enter ‘auto’ for autogenerating ids.

	-reads1

	file of read 1 of paired reads

	FASTA or FASTQ format (or gzipped)

	-reads2

	file of read 2 of paired reads
(optional for single-end reads)

	FASTA or FASTQ format (or gzipped)

	-output

	base filename to use for output files

	

	-maxreads

	subset of reads to process (optional)

	default is to use all reads

	-mismatches

	how many to allow when searching reads for
sequence patterns

	default is 1 mismatch

	-protocol

	Sassetti (default)

	The Sassetti sample prep protocol (with barcodes in
read2). Assumes Himar1 transposon.

	
	Tn5

	Reads can map to any site, not just TAs.

	
	Mme1

	Use of restriction enzyme recognizing the
terminus of the Himar1 transposon.

	
	
	These choices set the default transposon and
primer sequence.

	-primer

	nucleotide sequence

	Constant prefix of reads that TPP searches for.
default: ACTTATCAGCCAACCTGTTA (terminus of Himar1)

	-primer-start-window

	INT,INT (default is 0,20)

	Start and end nucleotides in read 1
in which to search for start of Tn prefix.

(Note: if you have already run TPP once, the you can leave out the
specification of the path for BWA, and it will automatically take the
path stored in the config file, tpp.cfg. Same for ref, if you always use
the same reference sequence.)

(The -primer-start-window flag specifies the range of nucleotide in read 1
to search for the start of the primer sequence (which is the end of the transposon).
This is useful to narrow the down the region to search from the whole read
(especially if the primer sequence is short, e.g. <10bp),
to avoid spurious matches in reads not representing true transposon:genomic junctions.
Depending on the protocol and
primer design, the constant sequence corresponding the the end of the transposon
usually occurs near the beginning of the read, possibly at varying (shifted) positions.
However, if your primer sequence is long enough (e.g >16bp), then the changes of
spurious matches (e.g. to the reference genome) is quite low.)

Mapping to Genomes with Multiple Contigs

Occasionally, it is useful to process TnSeq data where the reference genome consists of multiple sequences,
such as multiple chromosomes (e.g. Vibrio cholera), or a chromosome + plasmid, or it might be
a new strain with an incomplete assembly (multiple contigs not yet assembled into a single continuous scaffold).
While TPP was originally designed for mapping reads to one sequence at a time, it has recently been
extended to process multiple contigs in parallel (with help from Robert Jenquin and William Matern).

You can provide either a single merged reference sequence (multi-fasta file, with several
header lines and sequences), or a comma-separated list of input fasta files (command-line only).
If multiple sequences are provided to TPP, you will have to include an additional flag on the
command line called -replicon-ids (again, a comma-separated list; the number of ids needs to match
the number of input sequences. Use ‘auto’ to autogenerate ids).

In the GUI, there is a new field for specifiying replicon-ids as well.
If there is just one sequence or contig, you can leave replicon-ids blank; you do not have to specify it
in the GUI or on the command line.

In such situations, TPP will generate multiple .wig files, each with the base filename (arg of ‘-output’ flag),
suffixed with a replicon-id.

For example, consider the following example command:

> python tpp.py python -bwa ../../bwa-0.7.12/bwa -ref avium104.fna,pMAH135.fna -replicon-ids avium104,pMAH135 -reads1 TnSeq-avium-7H10-A1_R1.fastq -reads2 TnSeq-avium-7H10-A1_R2.fastq -output TnSeq-avium-7H10-A1

This command would generate output these files:

TnSeq-avium-7H10-A1_avium104.wig and TnSeq-avium-7H10-A1_pMAH135.wig.

Overview of Data Processing Procedure

Here is a brief summary of the steps performed in converting raw reads
(.fastq files) into template counts:

	Convert .fastq files to .fasta format (.reads).

	Identify reads with the transposon prefix in R1 . The sequence
searched for is ACTTATCAGCCAACCTGTTA (or TAAGAGACAG for Tn5), which must start between cycles
5 and 10 (inclusive). (Note that this ends in the canonical terminus
of the Himar1 transposon, TGTTA.) The “staggered” position of this
sequence is due to insertion a few nucleotides of variable length in
the primers used in the Tn-Seq sample prep protocol (e.g. 4 variants
of Sol_AP1_57, etc.). The number of mimatches allowed in searching
reads for the transposon sequence pattern can be adjusted as an
option in the interface; the default is 1.

	Extract genomic part of read 1. This is the suffix following the
transposon sequence pattern above. However, for reads coming from
fragments shorter than the read length, the adapter might appear at
the other end of R1, TACCACGACCA. If so, the adapter suffix is
stripped off. (These are referred to as “truncated” reads, but they
can still be mapped into the genome just fine by BWA.) The length of
the genomic part must be at least 20 bp.

	Extract barcodes from read 2. Read 2 is searched for
GATGGCCGGTGGATTTGTGnnnnnnnnnnTGGTCGTGGTAT”. The length of the barcode
is typically 10 bp, but can be varaible, and must be between 5-15 bp.

	Extract genomic portions of read 2. This is the part following
TGGTCGTGGTAT…. It is often the whole suffix of the read. However,
if the read comes from a short DNA fragment that is shorter than the
read length, the adapter on the other end might appear, in which case
it is stripped off and the nucleotides in the middle representing the
genomic insert, TGGTCGTGGTATxxxxxxxTAACAGGTTGGCTGATAAG. The insert
must be at least 20 bp long (inserts shorter than this are discarded,
as they might map to spurious locations in the genome).

	Map genomic parts of R1 and R2 into the genome using BWA. Mismatches
are allowed, but indels are ignored. No trimming is performed. BWA is
run in ‘sampe’ mode (treating reads as pairs). Both reads of a pair
must map (on opposite strands) to be counted.

	Count the reads mapping to each TA site in the reference genome (or all sites for Tn5).

	Reduce raw read counts to unique template counts. Group reads by
barcode AND mapping location of read 2 (aka fragment “endpoints”).

	Output template counts at each TA site in a .wig file.

	Calculate statistics like insertion_density and NZ_mean. Look for
the site with the max template count. Look for reads matching the
primer or vector sequences.

Statistics

See also: Transit Quality Control

Here is an explanation of the statistics that are saved in the
.tn_stats file and displayed in the table in the GUI. For convenience,
all the statistics are written out on one line with tab-separation at
the of the .tn_stats file, to make it easy to add it as a row in a
spreadsheet, as some people like to do to track multiple datasets.

	Statistic

	Description

	total_reads

	total number of reads in the original .fastq/.fasta

	truncated_reads

	reads representing DNA fragments shorter than the read length; adapter appears at end of read 1 and is stripped for mapping

	TGTTA_reads

	number of reads with a proper transposon prefix (ending in TGTTA in read1)

	reads1_mapped

	number of R1 mappped into genome (independent of R2)

	reads2_mapped

	number of R2 mappped into genome (independent of R1)

	mapped_reads

	number of reads which mapped into the genome (requiring both read1 and read2 to map)

	read_count

	total reads mapping to TA sites (mapped reads excluding those mapping to non-TA sites)

	template_count

	reduction of mapped reads to unique templates using barcodes

	template_ratio

	read_count / template_count

	TA_sites

	total number of TA dinucleotides in the genome

	TAs_hit

	number of TA sites with at least 1 insertion

	insertion_density

	TAs_hit / TA_sites

	max_count

	the maximum number of templates observed at any TA site

	max_site

	the coordinate of the site where the max count occurs

	NZ_mean

	mean template count over non-zero TA sites

	FR_corr

	correlation between template counts on Fwd strand versus Rev strand

	BC_corr

	correlation between read counts and template counts over non-zero sites

	primer_matches

	how many reads match the Himar1 primer sequence (primer-dimer problem in sample prep)

	vector_matches

	how many reads match the phiMycoMarT7 sequence (transposon vector) used in Tn mutant library construction

	adapter

	how many reads match the Illumina adapter (primer-dimers, no inserts).

	misprimed

	how many reads match the Himar1 primer but lack the TGTTA, meaning they primed at random sites (non-Tn junctions)

Here is an example of a .tn_stats file:

title: Tn-Seq Pre-Processor
date: 08/03/2016 13:01:47
command: python ../../src/tpp.py -bwa /pacific/home/ioerger/bwa-0.7.12/bwa -ref H37Rv.fna -reads1 TnSeq_H37Rv_CB_1M_R1.fastq -reads2 TnSeq_H37Rv_CB_1M_R2.fastq -output TnSeq_H37Rv_CB
transposon type: Himar1
read1: TnSeq_H37Rv_CB_1M_R1.fastq
read2: TnSeq_H37Rv_CB_1M_R2.fastq
ref_genome: H37Rv.fna
total_reads 1000000 (or read pairs)
TGTTA_reads 977626 (reads with valid Tn prefix, and insert size>20bp)
reads1_mapped 943233
reads2_mapped 892527
mapped_reads 885796 (both R1 and R2 map into genome)
read_count 879663 (TA sites only, for Himar1)
template_count 605660
template_ratio 1.45 (reads per template)
TA_sites 74605
TAs_hit 50382
density 0.675
max_count 356 (among templates)
max_site 2631639 (coordinate)
NZ_mean 12.0 (among templates)
FR_corr 0.821 (Fwd templates vs. Rev templates)
BC_corr 0.990 (reads vs. templates, summed over both strands)
primer_matches: 10190 reads (1.0%) contain CTAGAGGGCCCAATTCGCCCTATAGTGAGT (Himar1)
vector_matches: 5608 reads (0.6%) contain CTAGACCGTCCAGTCTGGCAGGCCGGAAAC (phiMycoMarT7)
adapter_matches: 0 reads (0.0%) contain GATCGGAAGAGCACACGTCTGAACTCCAGTCAC (Illumina/TruSeq index)
misprimed_reads: 6390 reads (0.6%) contain Himar1 prefix but don't end in TGTTA
read_length: 125 bp
mean_R1_genomic_length: 92.9 bp
mean_R2_genomic_length: 79.1 bp
TnSeq_H37Rv_CB_1M_R1.fastq TnSeq_H37Rv_CB_1M_R2.fastq 1000000 977626 943233 892527 885796 879663 605660 1.45240398904 74605 50382 356 0.675316667784 2631639 12.0213568338 0.8209081083 0.989912222642 10190 5608 0 6390

Interpretation: To assess the quality of a dataset, I would
recommend starting by looking at these primary statistics:

	mapped reads: should be on the order of several million
mapped_reads; if there is a significant reduction from total_reads,
look at reads1_mapped and reads2_mapped and truncated_reads to
figure what might have gone wrong; you might try allowing 2
mismatches

	primer/vector_matches: check whether a lot of the reads might be
matching the primer or vector sequences; if they match the vector, it
suggests your library still has phage contamination from the original
infection; if there are a lot of primer reads, these probably
represent “primer-dimers”, which could be reduced by inproving
fragment size selection during sample prep.

	insertion density: good libraries should have insertions in at least
~35% of TA sites for meaningful statistical analysis

	NZ_mean: good datasets should have a mean of around 50 templates
per site for sufficient dynamic range

If something doesn’t look right, the other statistics might be helpful
in figuring out what went wrong. If you see a significant reduction in
reads, it could be due to some poor sequencing cycles, or using the
wrong reference genome, or a contaminant of some type. Some attrition is
to be expected (loss of maybe 10-40% of the reads). The last 2
statistics indicate 2 common cases: how many reads match the primer or
vector sequences. Hopefully these counts will be low, but if they
represent a large fraction of your reads, it could mean you have a
problem with your sample prep protocol or Tn mutant library,
respectively.

Comments or Questions?

TPP was developed by Thomas R.
Ioerger [http://faculty.cse.tamu.edu/ioerger/] at Texas A&M
University. If you have any comments or questions, please feel free to
send me an email at: ioerger@cs.tamu.edu

transit package

Submodules

pytransit.norm_tools module

	
class pytransit.norm_tools.AdaptiveBGCNorm[source]

	Bases: pytransit.norm_tools.NormMethod

	
cleaninfgeom(rho)[source]

	Returns a ‘clean’ output from the geometric distribution.

	
ecdf(x)[source]

	Calculates an empirical CDF of the given data.

	
name = 'aBGC'

	

	
static normalize(data, wigList=[], annotationPath='', doTotReads=True, bgsamples=200000)[source]

	Returns the normalized data using the aBGC method.

	Parameters

	
	data (numpy array) – (K,N) numpy array defining read-counts at N sites
for K datasets.

	doTotReads (bool) – Boolean specifying whether to do TTR normalization as well.

	bgsamples (int) – Integeer specifying how many samples to take.

	Returns

	Array with the normalized data.

	Return type

	numpy array

	Example

	>>> import pytransit.norm_tools as norm_tools
>>> import pytransit.tnseq_tools as tnseq_tools
>>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
>>> print(data)
array([[0., 0., 0., ..., 0., 0., 0.],
 [0., 0., 0., ..., 0., 0., 0.]])
>>> normdata = norm_tools.aBGC_norm(data)
>>> print(normdata)
array([[0., 0., 0., ..., 0., 0., 0.],
 [0., 0., 0., ..., 0., 0., 0.]])

See also

normalize_data

	
class pytransit.norm_tools.BetaGeomNorm[source]

	Bases: pytransit.norm_tools.NormMethod

	
cleaninfgeom(rho)[source]

	Returns a ‘clean’ output from the geometric distribution.

	
ecdf(x)[source]

	Calculates an empirical CDF of the given data.

	
name = 'betageom'

	

	
static normalize(data, wigList=[], annotationPath='', doTTR=True, bgsamples=200000)[source]

	Returns normalized data according to the BGC method.

	Parameters

	
	data (numpy array) – (K,N) numpy array defining read-counts at N sites
for K datasets.

	doTTR (bool) – Boolean specifying whether to do TTR norm as well.

	bgsamples (int) – Integer specifying how many samples to take.

	Returns

	Array with the data normalized using the betageom method.

	Return type

	numpy array

	Example

	>>> import pytransit.norm_tools as norm_tools
>>> import pytransit.tnseq_tools as tnseq_tools
>>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
>>> print(data)
array([[0., 0., 0., ..., 0., 0., 0.],
 [0., 0., 0., ..., 0., 0., 0.]])
>>> normdata = norm_tools.betageom_norm(data)
>>> print(normdata)
[[0. 0. 0. ..., 0. 0. 0.]
 [0. 0. 0. ..., 0. 0. 0.]]

See also

normalize_data

	
class pytransit.norm_tools.EmpHistNorm[source]

	Bases: pytransit.norm_tools.NormMethod

	
static Fzinfnb(params, args)[source]

	Objective function for the zero-inflated NB method.

	
name = 'emphist'

	

	
static normalize(data, wigList=[], annotationPath='')[source]

	Returns the normalized data, using the empirical hist method.

	Parameters

	
	wigList (list) – List of paths to wig formatted datasets.

	annotationPath (str) – Path to annotation in .prot_table or GFF3 format.

	Returns

	Array with the normalization factors for the emphist method.

	Return type

	numpy array

	Example

	>>> import pytransit.norm_tools as norm_tools
>>> import pytransit.tnseq_tools as tnseq_tools
>>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
>>> print(data)
array([[0., 0., 0., ..., 0., 0., 0.],
 [0., 0., 0., ..., 0., 0., 0.]])
>>> factors = norm_tools.emphist_factors(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"], "transit/genomes/H37Rv.prot_table")
>>> print(factors)
array([[1.],
 [0.63464722]])

See also

normalize_data

	
pytransit.norm_tools.Fzinfnb(params, args)[source]

	Objective function for the zero-inflated NB method.

	
class pytransit.norm_tools.NZMeanNorm[source]

	Bases: pytransit.norm_tools.NormMethod

	
name = 'nzmean'

	

	
static normalize(data, wigList=[], annotationPath='')[source]

	Returns the normalization factors for the data, using the NZMean method.

	Parameters

	data (numpy array) – (K,N) numpy array defining read-counts at N sites
for K datasets.

	Returns

	Array with the normalization factors for the nzmean method.

	Return type

	numpy array

	Example

	>>> import pytransit._tools.norm_tools as norm_tools
>>> import pytransit.tnseq_tools as tnseq_tools
>>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
>>> print(data)
array([[0., 0., 0., ..., 0., 0., 0.],
 [0., 0., 0., ..., 0., 0., 0.]])
>>> factors = norm_tools.nzmean_factors(data)
>>> print(factors)
array([[1.14836149],
 [0.88558737]])

See also

normalize_data

	
class pytransit.norm_tools.NoNorm[source]

	Bases: pytransit.norm_tools.NormMethod

	
name = 'nonorm'

	

	
static normalize(data, wigList=[], annotationPath='')[source]

	

	
class pytransit.norm_tools.NormMethod[source]

	
	
name = 'undefined'

	

	
static normalize()[source]

	

	
class pytransit.norm_tools.QuantileNorm[source]

	Bases: pytransit.norm_tools.NormMethod

	
name = 'quantile'

	

	
static normalize(data, wigList=[], annotationPath='')[source]

	Performs Quantile Normalization as described by Bolstad et al. 2003

	Parameters

	data (numpy array) – (K,N) numpy array defining read-counts at N sites
for K datasets.

	Returns

	Array with the data normalized by the quantile normalization method.

	Return type

	numpy array

	Example

	>>> import pytransit.norm_tools as norm_tools
>>> import pytransit.tnseq_tools as tnseq_tools
>>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
>>> print(data)
array([[0., 0., 0., ..., 0., 0., 0.],
 [0., 0., 0., ..., 0., 0., 0.]])
>>> normdata = norm_tools.quantile_norm(data)
>>> print(normdata)

See also

normalize_data

	
class pytransit.norm_tools.TTRNorm[source]

	Bases: pytransit.norm_tools.NormMethod

	
empirical_theta()[source]

	Calculates the observed density of the data.

This is used as an estimate insertion density by some normalization methods.
May be improved by more sophisticated ways later on.

	Parameters

	data (numpy array) –
	numpy array defining read-counts at N sites.

	Returns

	Density of the given dataset.

	Return type

	float

	Example

	>>> import pytransit.tnseq_tools as tnseq_tools
>>> import pytransit.norm_tools as norm_tools
>>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
>>> print(data)
array([[0., 0., 0., ..., 0., 0., 0.],
 [0., 0., 0., ..., 0., 0., 0.]])
>>> theta = norm_tools.empirical_theta(data)
>>> print(theta)
0.467133570136

See also

TTR_factors

	
name = 'emphist'

	

	
static normalize(data, wigList=[], annotationPath='', thetaEst=<function empirical_theta>, muEst=<function trimmed_empirical_mu>, target=100.0)[source]

	Returns the normalization factors for the data, using the TTR method.

	Parameters

	
	data (numpy array) – (K,N) numpy array defining read-counts at N sites
for K datasets.

	thetaEst (function) – Function used to estimate density. Should take a list
of counts as input.

	muEst (function) – Function used to estimate mean count. Should take a list
of counts as input.

	Returns

	Array with the normalization factors for the TTR method.

	Return type

	numpy array

	Example

	>>> import pytransit.norm_tools as norm_tools
>>> import pytransit.tnseq_tools as tnseq_tools
>>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
>>> print(data)
array([[0., 0., 0., ..., 0., 0., 0.],
 [0., 0., 0., ..., 0., 0., 0.]])
>>> factors = norm_tools.TTR_factors(data)
>>> print(factors)
array([[1.],
 [0.62862886]])

See also

normalize_data

	
trimmed_empirical_mu(t=0.05)[source]

	Estimates the trimmed mean of the data.

This is used as an estimate of mean count by some normalization methods.
May be improved by more sophisticated ways later on.

	Parameters

	
	data (numpy array) –
	numpy array defining read-counts at N sites.

	t (float) – Float specifying fraction of start and end to trim.

	Returns

	(Trimmed) Mean of the given dataset.

	Return type

	float

	Example

	>>> import pytransit.tnseq_tools as tnseq_tools
>>> import pytransit.norm_tools as norm_tools
>>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
>>> print(data)
array([[0., 0., 0., ..., 0., 0., 0.],
 [0., 0., 0., ..., 0., 0., 0.]])
>>> mu = norm_tools.trimmed_empirical_mu(data)
>>> print(mu)
120.73077107

See also

TTR_factors

	
class pytransit.norm_tools.TotReadsNorm[source]

	Bases: pytransit.norm_tools.NormMethod

	
name = 'totreads'

	

	
static normalize(data, wigList=[], annotationPath='')[source]

	Returns the normalization factors for the data, using the total reads
method.

	Parameters

	data (numpy array) – (K,N) numpy array defining read-counts at N sites
for K datasets.

	Returns

	Array with the normalization factors for the totreads method.

	Return type

	numpy array

	Example

	>>> import pytransit.norm_tools as norm_tools
>>> import pytransit.tnseq_tools as tnseq_tools
>>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
>>> print(data)
array([[0., 0., 0., ..., 0., 0., 0.],
 [0., 0., 0., ..., 0., 0., 0.]])
>>> factors = norm_tools.totreads_factors(data)
>>> print(factors)
array([[1.2988762],
 [0.8129396]])

See also

normalize_data

	
class pytransit.norm_tools.ZeroInflatedNBNorm[source]

	Bases: pytransit.norm_tools.NormMethod

	
name = 'zinfb'

	

	
static normalize(data, wigList=[], annotationPath='')[source]

	Returns the normalization factors for the data using the zero-inflated
negative binomial method.

	Parameters

	data (numpy array) – (K,N) numpy array defining read-counts at N sites
for K datasets.

	Returns

	Array with the normalization factors for the zinfnb method.

	Return type

	numpy array

	Example

	>>> import pytransit.norm_tools as norm_tools
>>> import pytransit.tnseq_tools as tnseq_tools
>>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
>>> print(data)
array([[0., 0., 0., ..., 0., 0., 0.],
 [0., 0., 0., ..., 0., 0., 0.]])
>>> factors = norm_tools.zinfnb_factors(data)
>>> print(factors)
[[0.0121883]
 [0.00747111]]

See also

normalize_data

	
pytransit.norm_tools.cleaninfgeom(x, rho)[source]

	Returns a ‘clean’ output from the geometric distribution.

	
pytransit.norm_tools.ecdf(S, x)[source]

	Calculates an empirical CDF of the given data.

	
pytransit.norm_tools.empirical_theta(X)[source]

	Calculates the observed density of the data.

This is used as an estimate insertion density by some normalization methods.
May be improved by more sophisticated ways later on.

	Parameters

	data (numpy array) –
	numpy array defining read-counts at N sites.

	Returns

	Density of the given dataset.

	Return type

	float

	Example

	>>> import pytransit.tnseq_tools as tnseq_tools
>>> import pytransit.norm_tools as norm_tools
>>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
>>> print(data)
array([[0., 0., 0., ..., 0., 0., 0.],
 [0., 0., 0., ..., 0., 0., 0.]])
>>> theta = norm_tools.empirical_theta(data)
>>> print(theta)
0.467133570136

See also

TTR_factors

	
pytransit.norm_tools.norm_to_target(data, target)[source]

	Returns factors to normalize the data to the given target value.

	Parameters

	
	data (numpy array) – (K,N) numpy array defining read-counts at N sites
for K datasets.

	target (float) – Floating point specifying the target for the mean of the data/

	Returns

	Array with the factors necessary to normalize mean to target.

	Return type

	numpy array

	Example

	>>> import pytransit.norm_tools as norm_tools
>>> import pytransit.tnseq_tools as tnseq_tools
>>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
>>> print(data)
array([[0., 0., 0., ..., 0., 0., 0.],
 [0., 0., 0., ..., 0., 0., 0.]])
>>> factors = norm_tools.norm_to_target(data, 100)
>>> print(factors)
[[1.8548104]
 [1.16088726]]

See also

normalize_data

	
pytransit.norm_tools.normalize_data(data, method='nonorm', wigList=[], annotationPath='')[source]

	Normalizes the numpy array by the given normalization method.

	Parameters

	
	data (numpy array) – (K,N) numpy array defining read-counts at N sites
for K datasets.

	method (str) – Name of the desired normalization method.

	wigList (list) – List of paths for the desired wig-formatted datasets.

	annotationPath (str) – Path to the prot_table annotation file.

	Returns

	Array with the normalized data.
list: List containing the normalization factors. Empty if not used.

	Return type

	numpy array

	Example

	>>> import pytransit.norm_tools as norm_tools
>>> import pytransit.tnseq_tools as tnseq_tools
>>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
>>> print(data)
array([[0., 0., 0., ..., 0., 0., 0.],
 [0., 0., 0., ..., 0., 0., 0.]])
(normdata, normfactors) = norm_tools.normalize_data(data, "TTR") # Some methods require annotation and path to wig files.
>>> print(normfactors)
array([[1.],
 [0.62862886]])
>> print(normdata)
array([[0., 0., 0., ..., 0., 0., 0.],
 [0., 0., 0., ..., 0., 0., 0.]])

Note

Some normalization methods require the wigList and annotationPath arguments.

	
pytransit.norm_tools.trimmed_empirical_mu(X, t=0.05)[source]

	Estimates the trimmed mean of the data.

This is used as an estimate of mean count by some normalization methods.
May be improved by more sophisticated ways later on.

	Parameters

	
	data (numpy array) –
	numpy array defining read-counts at N sites.

	t (float) – Float specifying fraction of start and end to trim.

	Returns

	(Trimmed) Mean of the given dataset.

	Return type

	float

	Example

	>>> import pytransit.tnseq_tools as tnseq_tools
>>> import pytransit.norm_tools as norm_tools
>>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
>>> print(data)
array([[0., 0., 0., ..., 0., 0., 0.],
 [0., 0., 0., ..., 0., 0., 0.]])
>>> mu = norm_tools.trimmed_empirical_mu(data)
>>> print(mu)
120.73077107

See also

TTR_factors

	
pytransit.norm_tools.zinfnb_factors(data)[source]

	Returns the normalization factors for the data using the zero-inflated
negative binomial method.

	Parameters

	data (numpy array) – (K,N) numpy array defining read-counts at N sites
for K datasets.

	Returns

	Array with the normalization factors for the zinfnb method.

	Return type

	numpy array

	Example

	>>> import pytransit.norm_tools as norm_tools
>>> import pytransit.tnseq_tools as tnseq_tools
>>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
>>> print(data)
array([[0., 0., 0., ..., 0., 0., 0.],
 [0., 0., 0., ..., 0., 0., 0.]])
>>> factors = norm_tools.zinfnb_factors(data)
>>> print(factors)
[[0.0121883]
 [0.00747111]]

See also

normalize_data

pytransit.stat_tools module

	
pytransit.stat_tools.BH_fdr_correction(X)[source]

	Adjusts p-values using the Benjamini Hochberg procedure

	
pytransit.stat_tools.FWER_Bayes(X)[source]

	

	
pytransit.stat_tools.F_mean_diff_dict(*args, **kwargs)[source]

	

	
pytransit.stat_tools.F_mean_diff_flat(*args, **kwargs)[source]

	

	
pytransit.stat_tools.F_shuffle_dict_libraries(*args, **kwargs)[source]

	

	
pytransit.stat_tools.F_shuffle_flat(*args, **kwargs)[source]

	

	
pytransit.stat_tools.F_sum_diff_dict(*args, **kwargs)[source]

	

	
pytransit.stat_tools.F_sum_diff_flat(*args, **kwargs)[source]

	

	
pytransit.stat_tools.HDI_from_MCMC(posterior_samples, credible_mass=0.95)[source]

	

	
pytransit.stat_tools.bFDR(X)[source]

	

	
pytransit.stat_tools.bayesian_ess_thresholds(Z_raw, ALPHA=0.05)[source]

	Returns Essentiality Thresholds using a BH-like procedure

	
pytransit.stat_tools.binom(k, n, p)[source]

	Binomial distribution. Uses Normal approximation for large ‘n’

	
pytransit.stat_tools.binom_cdf(k, n, p)[source]

	CDF of the binomial distribution

	
pytransit.stat_tools.binom_test(k, n, p, type='two-sided')[source]

	Does a binomial test given success, trials and probability.

	
pytransit.stat_tools.boxcoxTable(X, minlambda, maxlambda, dellambda)[source]

	Returns a table of (loglik function, lambda) pairs
for the data.

	
pytransit.stat_tools.boxcoxtransform(x, lambdax)[source]

	Performs a box-cox transformation to data vector X.
WARNING: elements of X should be all positive!
Fixed: ‘>’ has changed to ‘<’

	
pytransit.stat_tools.comb(n, k)[source]

	

	
pytransit.stat_tools.comb1(n, k)[source]

	

	
pytransit.stat_tools.combine_lib_dicts(L1, L2)[source]

	

	
pytransit.stat_tools.cumulative_average(new_x, n, prev_avg)[source]

	

	
pytransit.stat_tools.dberndiff(d, peq, p01, p10)[source]

	

	
pytransit.stat_tools.dbinomdiff(d, n, P)[source]

	

	
pytransit.stat_tools.fact(n)[source]

	

	
pytransit.stat_tools.get_lib_data_dict(data1, ctrl_lib_str, data2, exp_lib_str, nTAs)[source]

	

	
pytransit.stat_tools.isEven(x)[source]

	

	
pytransit.stat_tools.loess(X, Y, h=10000)[source]

	

	
pytransit.stat_tools.loess_correction(X, Y, h=10000, window=100)[source]

	

	
pytransit.stat_tools.log_fac(n)[source]

	

	
pytransit.stat_tools.loglik(X, lambdax)[source]

	Computes the log-likelihood function for a transformed vector Xtransform.

	
pytransit.stat_tools.multinomial(K, P)[source]

	

	
pytransit.stat_tools.my_perm(d, n)[source]

	

	
pytransit.stat_tools.norm(x, mu, sigma)[source]

	Normal distribution

	
pytransit.stat_tools.parse_lib_index(nData, libstr, nTAs)[source]

	

	
pytransit.stat_tools.phi_coefficient(X, Y)[source]

	Calculates the phi-coefficient for two bool arrays

	
pytransit.stat_tools.qberndiff(d, peq, p01, p10)[source]

	

	
pytransit.stat_tools.qbinomdiff(d, n, peq, p01, p10)[source]

	

	
pytransit.stat_tools.regress(X, Y)[source]

	Performs linear regression given two vectors, X, Y.

	
pytransit.stat_tools.resampling(data1, data2, S=10000, testFunc=<function F_mean_diff_flat>, permFunc=<function F_shuffle_flat>, adaptive=False, lib_str1='', lib_str2='', PC=1)[source]

	Does a permutation test on two sets of data.

Performs the resampling / permutation test given two sets of data using a
function defining the test statistic and a function defining how to permute
the data.

	Parameters

	
	ar – List or numpy array with the first set of observations.

	data2 – List or numpy array with the second set of observations.

	S – Number of permutation tests (or samples) to obtain.

	testFunc – Function defining the desired test statistic. Should accept
two lists as arguments. Default is difference in means between
the observations.

	permFunc – Function defining the way to permute the data. Should accept
one argument, the combined set of data. Default is random
shuffle.

	adaptive – Cuts-off resampling early depending on significance.

	Returns

	
	Tuple with described values

	
	test_obs – Test statistic of observation.

	mean1 – Arithmetic mean of first set of data.

	mean2 – Arithmetic mean of second set of data.

	log2FC – Normalized log2FC the means.

	pval_ltail – Lower tail p-value.

	pval_utail – Upper tail p-value.

	pval_2tail – Two-tailed p-value.

	test_sample – List of samples of the test statistic.

	Example

	>>> import pytransit.stat_tools as stat_tools
>>> import numpy
>>> X = numpy.random.random(100)
>>> Y = numpy.random.random(100)
>>> (test_obs, mean1, mean2, log2fc, pval_ltail, pval_utail, pval_2tail, test_sample) = stat_tools.resampling(X,Y)
>>> pval_2tail
0.2167
>>> test_sample[:3]
[0.076213992904990535, -0.0052513291091412784, -0.0038425140184765172]

	
pytransit.stat_tools.sample_trunc_norm_post(data, S, mu0, s20, k0, nu0)[source]

	

	
pytransit.stat_tools.text_histogram(X, nBins=20, resolution=200, obs=None)[source]

	

	
pytransit.stat_tools.transformToRange(X, new_min, new_max, old_min=None, old_max=None)[source]

	

	
pytransit.stat_tools.tricoeff(N, S)[source]

	

	
pytransit.stat_tools.tricube(X)[source]

	

pytransit.tnseq_tools module

	
pytransit.tnseq_tools.ExpectedRuns(n, pnon)[source]

	Expected value of the run of non=insertions (Schilling, 1990):

ER_n = log(1/p)(nq) + gamma/ln(1/p) -1/2 + r1(n) + E1(n)

	Parameters

	
	n (int) – Integer representing the number of sites.

	pins (float) – Floating point number representing the probability of non-insertion.

	Returns

	Size of the expected maximum run.

	Return type

	float

	
class pytransit.tnseq_tools.Gene(orf, name, desc, reads, position, start=0, end=0, strand='')[source]

	Class defining a gene with useful attributes for TnSeq analysis.

This class helps define a “gene” with attributes that facilitate TnSeq
analysis. Here “gene” can be defined to be any genomic region. The Genes
class (with an s) can be used to define list of Gene objects with more
useful operations on the “genome” level.

	
orf

	A string defining the ID of the gene.

	
name

	A string with the human readable name of the gene.

	
desc

	A string with the description of the gene.

	
reads

	List of lists of read-counts in possible site replicate dataset.

	
position

	List of coordinates of the possible sites.

	
start

	An integer defining the start coordinate for the gene.

	
end

	An integer defining the end coordinate for the gene.

	
strand

	A string defining the strand of the gene.

	Example

	>>> import pytransit.tnseq_tools as tnseq_tools
>>> G = tnseq_tools.Gene("Rv0001", "dnaA", "DNA Replication A", [[0,0,0,0,1,3,0,1]], [1,21,32,37,45,58,66,130], strand="+")
>>> print(G)
Rv0001 (dnaA) k=3 n=8 r=4 theta=0.37500
>>> print(G.phi())
0.625
>>> print(G.tosses)
array([0., 0., 0., 0., 1., 1., 0., 1.])

See also

Genes

	
__eq__(other)[source]

	Compares against other gene object.

	Returns

	True if the gene objects have same orf id.

	Return type

	bool

	
__ge__(other)

	x.__ge__(y) <==> x>=y

	
__getitem__(i)[source]

	Return read-counts at position i.

	Parameters

	i (int) – integer of the index of the desired site.

	Returns

	Reads at position i.

	Return type

	list

	
__gt__(other)

	x.__gt__(y) <==> x>y

	
__le__(other)

	x.__le__(y) <==> x<=y

	
__lt__(other)[source]

	Compares against other gene object.

	Returns

	True if the gene object id is less than the other.

	Return type

	bool

	
__ne__(other)

	x.__ne__(y) <==> x!=y

	
__str__()[source]

	Return a string representation of the object.

	Returns

	Human readable string with some of the attributes.

	Return type

	str

	
get_gap_span()[source]

	Returns the span of the maxrun of the gene (i.e. number of nucleotides).

	Returns

	Number of nucleotides spanned by the max run.

	Return type

	int

	
get_gene_span()[source]

	Returns the number of nucleotides spanned by the gene.

	Returns

	Number of nucleotides spanned by the gene’s sites.

	Return type

	int

	
phi()[source]

	Return the non-insertion density (“phi”) for the gene.

	Returns

	Non-insertion density (i.e. 1 - theta)

	Return type

	float

	
theta()[source]

	Return the insertion density (“theta”) for the gene.

	Returns

	Density of the gene (i.e. k/n)

	Return type

	float

	
total_reads()[source]

	Return the total reads for the gene.

	Returns

	Total sum of read-counts.

	Return type

	float

	
class pytransit.tnseq_tools.Genes(wigList, annotation, norm='nonorm', reps='All', minread=1, ignoreCodon=True, nterm=0.0, cterm=0.0, include_nc=False, data=[], position=[], genome='', transposon='himar1')[source]

	Class defining a list of Gene objects with useful attributes for TnSeq
analysis.

This class helps define a list of Gene objects with attributes that
facilitate TnSeq analysis. Includes methods that calculate useful statistics
and even rudamentary analysis of essentiality.

	
wigList

	List of paths to datasets in .wig format.

	
protTable

	String with path to annotation in .prot_table format.

	
norm

	String with the normalization used/

	
reps

	String with information on how replicates were handled.

	
minread

	Integer with the minimum magnitude of read-count considered.

	
ignoreCodon

	Boolean defining whether to ignore the start/stop codon.

	
nterm

	Float number of the fraction of the N-terminus to ignore.

	
cterm

	Float number of the fraction of the C-terminus to ignore.

	
include_nc

	Boolean determining whether to include non-coding areas.

	
orf2index

	Dictionary of orf id to index in the genes list.

	
genes

	List of the Gene objects.

	Example

	>>> import pytransit.tnseq_tools as tnseq_tools
>>> G = tnseq_tools.Genes(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"], "transit/genomes/H37Rv.prot_table", norm="TTR")
>>> print(G)
Genes Object (N=3990)
>>> print(G.global_theta())
0.40853707222816626
>>> print(G["Rv0001"] # Lookup like dictionary)
Rv0001 (dnaA) k=0 n=31 r=31 theta=0.00000
>>> print(G[2] # Lookup like list)
Rv0003 (recF) k=5 n=35 r=14 theta=0.14286
>>> print(G[2].reads)
[[62. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0.
 0. 0. 63. 0. 0. 13.
46. 0. 1. 0. 0. 0.
 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0.]
 [3.14314432 67.26328843 0. 0. 0. 0.
 0. 0. 0. 35.20321637 0. 0.
 0. 0. 30.80281433 0. 101.20924707
 0. 23.25926796 0. 16.97297932 8.17217523
 0. 0. 2.51451546 3.77177318 0.62862886
 0. 0. 69.14917502 0. 0. 0.
 0. 0.]]

See also

Gene

	
__contains__(item)[source]

	Defines __contains__ to check if gene exists in the list.

	Parameters

	item (str) – String with the id of the gene.

	Returns

	Boolean with True if item is in the list.

	Return type

	bool

	
__getitem__(i)[source]

	Defines __getitem__ method so that it works as dictionary and list.

	Parameters

	i (int) – Integer or string defining index or orf ID desired.

	Returns

	A gene with the index or ID equal to i.

	Return type

	Gene

	
__len__()[source]

	Defines __len__ returning number of genes.

	Returns

	Number of genes in the list.

	Return type

	int

	
__str__()[source]

	Defines __str__ to print(a generic str with the size of the list.)

	Returns

	Human readable string with number of genes in object.

	Return type

	str

	
global_insertion()[source]

	Returns total number of insertions, i.e. sum of ‘k’ over all genes.

	Returns

	Total sum of reads across all genes.

	Return type

	float

	
global_phi()[source]

	Returns global non-insertion frequency, of the library.

	Returns

	Complement of global theta i.e. 1.0-theta

	Return type

	float

	
global_reads()[source]

	Returns the reads among the library.

	Returns

	List of all the data.

	Return type

	list

	
global_run()[source]

	Returns the run assuming all genes were concatenated together.

	Returns

	Max run across all genes.

	Return type

	int

	
global_sites()[source]

	Returns total number of sites, i.e. sum of ‘n’ over all genes.

	Returns

	Total number of sites across all genes.

	Return type

	int

	
global_theta()[source]

	Returns global insertion frequency, of the library.

	Returns

	Total sites with insertions divided by total sites.

	Return type

	float

	
local_gap_span()[source]

	Returns numpy array with the span of nucleotides of the largest gap,
‘s’, for each gene.

	Returns

	Numpy array with the span of gap for all genes.

	Return type

	narray

	
local_gene_span()[source]

	Returns numpy array with the span of nucleotides of the gene,
‘t’, for each gene.

	Returns

	Numpy array with the span of gene for all genes.

	Return type

	narray

	
local_insertions()[source]

	Returns numpy array with the number of insertions, ‘k’, for each gene.

	Returns

	Numpy array with the number of insertions for all genes.

	Return type

	narray

	
local_phis()[source]

	Returns numpy array of non-insertion frequency, ‘phi’, for each gene.

	Returns

	Numpy array with the complement of density for all genes.

	Return type

	narray

	
local_reads()[source]

	Returns numpy array of lists containing the read counts for each gene.

	Returns

	Numpy array with the list of reads for all genes.

	Return type

	narray

	
local_runs()[source]

	Returns numpy array with maximum run of non-insertions, ‘r’, for each gene.

	Returns

	Numpy array with the max run of non-insertions for all genes.

	Return type

	narray

	
local_sites()[source]

	Returns numpy array with total number of TA sites, ‘n’, for each gene.

	Returns

	Numpy array with the number of sites for all genes.

	Return type

	narray

	
local_thetas()[source]

	Returns numpy array of insertion frequencies, ‘theta’, for each gene.

	Returns

	Numpy array with the density for all genes.

	Return type

	narray

	
tosses()[source]

	Returns list of bernoulli trials, ‘tosses’, representing insertions in the gene.

	Returns

	Sites represented as bernoulli trials with insertions as true.

	Return type

	list

	
total_reads()[source]

	Returns total reads among the library.

	Returns

	Total sum of read-counts accross all genes.

	Return type

	float

	
pytransit.tnseq_tools.GumbelCDF(x, u, B)[source]

	CDF of the Gumbel distribution:

e^(-e^((u-x)/B))

	Parameters

	
	x (int) – Length of the max run.

	u (float) – Location parameter of the Gumbel dist.

	B (float) – Scale parameter of the Gumbel dist.

	Returns

	Cumulative probability o the Gumbel distribution.

	Return type

	float

	
pytransit.tnseq_tools.VarR(n, pnon)[source]

	Variance of the expected run of non-insertons (Schilling, 1990):

\[VarR_n = (pi^2)/(6*ln(1/p)^2) + 1/12 + r2(n) + E2(n)\]

	Parameters

	
	n (int) – Integer representing the number of sites.

	pnon (float) – Floating point number representing the probability of non-insertion.

	Returns

	Variance of the length of the maximum run.

	Return type

	float

	
pytransit.tnseq_tools.check_wig_includes_zeros(wig_list)[source]

	Returns boolean list showing whether the given files include empty sites
(zero) or not.

	Parameters

	wig_list (list) – List of paths to wig files.

	Returns

	List of boolean values.

	Return type

	list

	
pytransit.tnseq_tools.combine_replicates(data, method='Sum')[source]

	Returns list of data merged together.

	Parameters

	
	data (list) – List of numeric (replicate) data to be merged.

	method (str) – How to combine the replicate dataset.

	Returns

	List of numeric dataset now merged together.

	Return type

	list

	
pytransit.tnseq_tools.getE1(n)[source]

	Small Correction term. Defaults to 0.01 for now

	
pytransit.tnseq_tools.getE2(n)[source]

	Small Correction term. Defaults to 0.01 for now

	
pytransit.tnseq_tools.getGamma()[source]

	Euler-Mascheroni constant ~ 0.577215664901

	
pytransit.tnseq_tools.getR1(n)[source]

	Small Correction term. Defaults to 0.000016 for now

	
pytransit.tnseq_tools.getR2(n)[source]

	Small Correction term. Defaults to 0.00006 for now

	
pytransit.tnseq_tools.get_coordinate_map(galign_path, reverse=False)[source]

	Attempts to get mapping of coordinates from galign file.

	Parameters

	
	path (str) – Path to .galign file.

	reverse (bool) – Boolean specifying whether to do A to B or B to A.

	Returns

	Dictionary of coordinate in one file to another file.

	Return type

	dict

	
pytransit.tnseq_tools.get_data(wig_list)[source]

	
	Returns a tuple of (data, position) containing a matrix of raw read-counts

	, and list of coordinates.

	Parameters

	wig_list (list) – List of paths to wig files.

	Returns

	Two lists containing data and positions of the wig files given.

	Return type

	tuple

	Example

	>>> import pytransit.tnseq_tools as tnseq_tools
>>> (data, position) = tnseq_tools.get_data(["data/glycerol_H37Rv_rep1.wig", "data/glycerol_H37Rv_rep2.wig"])
>>> print(data)
array([[0., 0., 0., ..., 0., 0., 0.],
 [0., 0., 0., ..., 0., 0., 0.]])

See also

get_file_types combine_replicates get_data_zero_fill pytransit.norm_tools.normalize_data

	
pytransit.tnseq_tools.get_data_stats(reads)[source]

	

	
pytransit.tnseq_tools.get_data_w_genome(wig_list, genome)[source]

	

	
pytransit.tnseq_tools.get_data_zero_fill(wig_list)[source]

	
	Returns a tuple of (data, position) containing a matrix of raw read counts,

	and list of coordinates. Positions that are missing are filled in as zero.

	Parameters

	wig_list (list) – List of paths to wig files.

	Returns

	Two lists containing data and positions of the wig files given.

	Return type

	tuple

	
pytransit.tnseq_tools.get_extended_pos_hash_gff(path, N=None)[source]

	

	
pytransit.tnseq_tools.get_extended_pos_hash_pt(path, N=None)[source]

	

	
pytransit.tnseq_tools.get_file_types(wig_list)[source]

	Returns the transposon type (himar1/tn5) of the list of wig files.

	Parameters

	wig_list (list) – List of paths to wig files.

	Returns

	List of transposon type (“himar1” or “tn5”).

	Return type

	list

	
pytransit.tnseq_tools.get_gene_info(path)[source]

	Returns a dictionary that maps gene id to gene information.

	Parameters

	path (str) – Path to annotation in .prot_table or GFF3 format.

	Returns

	
	Dictionary of gene id to tuple of information:

	
	name

	description

	start coordinate

	end coordinate

	strand

	Return type

	dict

	
pytransit.tnseq_tools.get_gene_info_gff(path)[source]

	Returns a dictionary that maps gene id to gene information.

	Parameters

	path (str) – Path to annotation in GFF3 format.

	Returns

	
	Dictionary of gene id to tuple of information:

	
	name

	description

	start coordinate

	end coordinate

	strand

	Return type

	dict

	
pytransit.tnseq_tools.get_gene_info_pt(path)[source]

	Returns a dictionary that maps gene id to gene information.

	Parameters

	path (str) – Path to annotation in .prot_table format.

	Returns

	
	Dictionary of gene id to tuple of information:

	
	name

	description

	start coordinate

	end coordinate

	strand

	Return type

	dict

	
pytransit.tnseq_tools.get_genes_in_range(pos_hash, start, end)[source]

	Returns list of genes that occur in a given range of coordinates.

	Parameters

	
	pos_hash (dict) – Dictionary of position to list of genes.

	start (int) – Start coordinate of the desired range.

	end (int) – End coordinate of the desired range.

	Returns

	List of genes that fall within range.

	Return type

	list

	
pytransit.tnseq_tools.get_pos_hash(path)[source]

	Returns a dictionary that maps coordinates to a list of genes that occur at that coordinate.

	Parameters

	path (str) – Path to annotation in .prot_table or GFF3 format.

	Returns

	Dictionary of position to list of genes that share that position.

	Return type

	dict

	
pytransit.tnseq_tools.get_pos_hash_gff(path)[source]

	Returns a dictionary that maps coordinates to a list of genes that occur at that coordinate.

	Parameters

	path (str) – Path to annotation in GFF3 format.

	Returns

	Dictionary of position to list of genes that share that position.

	Return type

	dict

	
pytransit.tnseq_tools.get_pos_hash_pt(path)[source]

	Returns a dictionary that maps coordinates to a list of genes that occur at that coordinate.

	Parameters

	path (str) – Path to annotation in .prot_table format.

	Returns

	Dictionary of position to list of genes that share that position.

	Return type

	dict

	
pytransit.tnseq_tools.get_unknown_file_types(wig_list, transposons)[source]

	

	
pytransit.tnseq_tools.get_wig_stats(path)[source]

	Returns statistics for the given wig file with read-counts.

	Parameters

	path (str) – String with the path to the wig file of interest.

	Returns

	
	Tuple with the following statistical measures:

	
	density

	mean read

	non-zero mean

	non-zero median

	max read

	total reads

	skew

	kurtosis

	Return type

	tuple

	
pytransit.tnseq_tools.griffin_analysis(genes_obj, pins)[source]

	Implements the basic Gumbel analysis of runs of non-insertion, described in Griffin et al. 2011.

This analysis method calculates a p-value of observing the maximun run of
TA sites without insertions in a row (i.e. a “run”, r). Unusually long
runs are indicative of an essential gene or protein domain. Assumes that
there is a constant, global probability of observing an insertion
(tantamount to a Bernoulli probability of success).

	Parameters

	
	genes_obj (Genes) – An object of the Genes class defining the genes.

	pins (float) – The probability of insertion.

	Returns

	
	List of lists with results and information for the genes. The elements of the list are as follows:

	
	ORF ID.

	Gene Name.

	Gene Description.

	Number of TA sites with insertions.

	Number of TA sites.

	Length of largest run of non-insertion.

	Expected run for a gene this size.

	p-value of the observed run.

	Return type

	list

	
pytransit.tnseq_tools.maxrun(lst, item=0)[source]

	Returns the length of the maximum run an item in a given list.

	Parameters

	
	lst (list) – List of numeric items.

	item (float) – Number to look for consecutive runs of.

	Returns

	Length of the maximum run of consecutive instances of item.

	Return type

	int

	
pytransit.tnseq_tools.read_combined_wig(fname)[source]

	Read the combined wig-file generated by Transit
:: Filename -> Tuple([Site], [WigData], [Filename])
Site :: Integer
WigData :: [Number]
Filename :: String

	
pytransit.tnseq_tools.read_genes(fname, descriptions=False)[source]

	(Filename, Options) -> [Gene]
Gene :: {start, end, rv, gene, strand}

	
pytransit.tnseq_tools.read_genome(path)[source]

	Reads in FASTA formatted genome file.

	Parameters

	path (str) – Path to .galign file.

	Returns

	String with the genomic sequence.

	Return type

	string

	
pytransit.tnseq_tools.read_samples_metadata(metadata_file, covarsToRead=[], interactionsToRead=[], condition_name='Condition')[source]

	Filename -> ConditionMap
ConditionMap :: {Filename: Condition}, [{Filename: Covar}], [{Filename: Interaction}]
Condition :: String
Covar :: String
Interaction :: String

	
pytransit.tnseq_tools.runindex(runs)[source]

	Returns a list of the indexes of the start of the runs; complements runs().

	Parameters

	runs (list) – List of numeric data.

	Returns

	List of the index of the runs of non-insertions. Non-zero sites are treated as runs of zero.

	Return type

	list

	
pytransit.tnseq_tools.runs(data)[source]

	Return list of all the runs of consecutive non-insertions.

	Parameters

	data (list) – List of numeric data.

	Returns

	List of the length of the runs of non-insertions. Non-zero sites are treated as runs of zero.

	Return type

	list

	
pytransit.tnseq_tools.runs_w_info(data)[source]

	Return list of all the runs of consecutive non-insertions with the start and end locations.

	Parameters

	data (list) – List of numeric data to check for runs.

	Returns

	List of dictionary from run to length and position information of the tun.

	Return type

	list

	
pytransit.tnseq_tools.rv_siteindexes_map(genes, TASiteindexMap, nterm=0.0, cterm=0.0)[source]

	([Gene], {TAsite: Siteindex}) -> {Rv: Siteindex}

	
pytransit.tnseq_tools.tossify(data)[source]

	Reduces the data into Bernoulli trials (or ‘tosses’) based on whether counts were observed or not.

	Parameters

	data (list) – List of numeric data.

	Returns

	Data represented as bernoulli trials with >0 as true.

	Return type

	list

pytransit.transit_tools module

	
pytransit.transit_tools.ShowAskWarning(MSG='')[source]

	

	
pytransit.transit_tools.ShowError(MSG='')[source]

	

	
pytransit.transit_tools.ShowMessage(MSG='')[source]

	

	
pytransit.transit_tools.aton(aa)[source]

	

	
pytransit.transit_tools.basename(filepath)[source]

	

	
pytransit.transit_tools.cleanargs(rawargs)[source]

	Returns a list and a dictionary with positional and keyword arguments.

	-This function assumes flags must start with a “-” and and cannot be a

	number (but can include them).

	-Flags should either be followed by the value they want to be associated

	with (i.e. -p 5) or will be assigned a value of True in the dictionary.

	-The dictionary will map flags to the name given minus ONE “-” sign in

	front. If you use TWO minus signs in the flag name (i.e. –verbose),
the dictionary key will be the name with ONE minus sign in front
(i.e. {“-verbose”:True}).

	Parameters

	rawargs (list) – List of positional/keyword arguments. As obtained from
sys.argv.

	Returns

	
	List of positional arguments (i.e. arguments without flags),

	in order provided.

	dict: Dictionary mapping flag (key is flag minus the first “-“) and

	their values.

	Return type

	list

	
pytransit.transit_tools.convertToCombinedWig(dataset_list, annotationPath, outputPath, normchoice='nonorm')[source]

	Normalizes the input datasets and outputs the result in CombinedWig format.

	Parameters

	
	dataset_list (list) – List of paths to datasets in .wig format

	annotationPath (str) – Path to annotation in .prot_table or GFF3 format.

	outputPath (str) – Desired output path.

	normchoice (str) – Choice for normalization method.

	
pytransit.transit_tools.convertToGeneCountSummary(dataset_list, annotationPath, outputPath, normchoice='nonorm')[source]

	Normalizes the input datasets and outputs the result in CombinedWig format.

	Parameters

	
	dataset_list (list) – List of paths to datasets in .wig format

	annotationPath (str) – Path to annotation in .prot_table or GFF3 format.

	outputPath (str) – Desired output path.

	normchoice (str) – Choice for normalization method.

	
pytransit.transit_tools.convertToIGV(self, dataset_list, annotationPath, path, normchoice=None)[source]

	

	
pytransit.transit_tools.dirname(filepath)[source]

	

	
pytransit.transit_tools.fetch_name(filepath)[source]

	

	
pytransit.transit_tools.getTabTableData(path, colnames)[source]

	

	
pytransit.transit_tools.get_extended_pos_hash(path)[source]

	Returns a dictionary that maps coordinates to a list of genes that occur at that coordinate.

	Parameters

	path (str) – Path to annotation in .prot_table or GFF3 format.

	Returns

	Dictionary of position to list of genes that share that position.

	Return type

	dict

	
pytransit.transit_tools.get_gene_info(path)[source]

	Returns a dictionary that maps gene id to gene information.

	Parameters

	path (str) – Path to annotation in .prot_table or GFF3 format.

	Returns

	
	Dictionary of gene id to tuple of information:

	
	name

	description

	start coordinate

	end coordinate

	strand

	Return type

	dict

	
pytransit.transit_tools.get_pos_hash(path)[source]

	Returns a dictionary that maps coordinates to a list of genes that occur at that coordinate.

	Parameters

	path (str) – Path to annotation in .prot_table or GFF3 format.

	Returns

	Dictionary of position to list of genes that share that position.

	Return type

	dict

	
pytransit.transit_tools.get_validated_data(wig_list, wxobj=None)[source]

	
	Returns a tuple of (data, position) containing a matrix of raw read-counts

	, and list of coordinates.

	Parameters

	
	wig_list (list) – List of paths to wig files.

	wxobj (object) – wxPython GUI object for warnings

	Returns

	Two lists containing data and positions of the wig files given.

	Return type

	tuple

	Example

	>>> import pytransit.tnseq_tools as tnseq_tools
>>> (data, position) = tnseq_tools.get_validated_data(["data/glycerol_H37Rv_rep1.wig", "data/glycerol_H37Rv_rep2.wig"])
>>> print(data)
array([[0., 0., 0., ..., 0., 0., 0.],
 [0., 0., 0., ..., 0., 0., 0.]])

See also

get_file_types combine_replicates get_data_zero_fill pytransit.norm_tools.normalize_data

	
pytransit.transit_tools.parseCoords(strand, aa_start, aa_end, start, end)[source]

	

	
pytransit.transit_tools.transit_error(text)[source]

	

	
pytransit.transit_tools.transit_message(msg='', prefix='')[source]

	

	
pytransit.transit_tools.validate_annotation(annotation)[source]

	

	
pytransit.transit_tools.validate_both_datasets(ctrldata, expdata)[source]

	

	
pytransit.transit_tools.validate_control_datasets(ctrldata)[source]

	

	
pytransit.transit_tools.validate_filetypes(datasets, transposons, justWarn=True)[source]

	

	
pytransit.transit_tools.validate_transposons_used(datasets, transposons, justWarn=True)[source]

	

	
pytransit.transit_tools.validate_wig_format(wig_list, wxobj=None)[source]

	

Module contents

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pytransit	

 	
 	
 pytransit.norm_tools	

 	
 	
 pytransit.stat_tools	

 	
 	
 pytransit.tnseq_tools	

 	
 	
 pytransit.transit_tools	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | V
 | W
 | Z

_

 	
 	__contains__() (pytransit.tnseq_tools.Genes method), [1]

 	__eq__() (pytransit.tnseq_tools.Gene method), [1]

 	__ge__() (pytransit.tnseq_tools.Gene method), [1]

 	__getitem__() (pytransit.tnseq_tools.Gene method), [1]

 	(pytransit.tnseq_tools.Genes method), [1]

 	__gt__() (pytransit.tnseq_tools.Gene method), [1]

 	
 	__le__() (pytransit.tnseq_tools.Gene method), [1]

 	__len__() (pytransit.tnseq_tools.Genes method), [1]

 	__lt__() (pytransit.tnseq_tools.Gene method), [1]

 	__ne__() (pytransit.tnseq_tools.Gene method), [1]

 	__str__() (pytransit.tnseq_tools.Gene method), [1]

 	(pytransit.tnseq_tools.Genes method), [1]

A

 	
 	AdaptiveBGCNorm (class in pytransit.norm_tools), [1]

 	
 	aton() (in module pytransit.transit_tools), [1]

B

 	
 	basename() (in module pytransit.transit_tools), [1]

 	bayesian_ess_thresholds() (in module pytransit.stat_tools), [1]

 	BetaGeomNorm (class in pytransit.norm_tools), [1]

 	bFDR() (in module pytransit.stat_tools), [1]

 	BH_fdr_correction() (in module pytransit.stat_tools), [1]

 	
 	binom() (in module pytransit.stat_tools), [1]

 	binom_cdf() (in module pytransit.stat_tools), [1]

 	binom_test() (in module pytransit.stat_tools), [1]

 	boxcoxTable() (in module pytransit.stat_tools), [1]

 	boxcoxtransform() (in module pytransit.stat_tools), [1]

C

 	
 	check_wig_includes_zeros() (in module pytransit.tnseq_tools), [1]

 	cleanargs() (in module pytransit.transit_tools), [1]

 	cleaninfgeom() (in module pytransit.norm_tools), [1]

 	(pytransit.norm_tools.AdaptiveBGCNorm method), [1]

 	(pytransit.norm_tools.BetaGeomNorm method), [1]

 	comb() (in module pytransit.stat_tools), [1]

 	comb1() (in module pytransit.stat_tools), [1]

 	
 	combine_lib_dicts() (in module pytransit.stat_tools), [1]

 	combine_replicates() (in module pytransit.tnseq_tools), [1]

 	convertToCombinedWig() (in module pytransit.transit_tools), [1]

 	convertToGeneCountSummary() (in module pytransit.transit_tools), [1]

 	convertToIGV() (in module pytransit.transit_tools), [1]

 	cterm (pytransit.tnseq_tools.Genes attribute), [1]

 	cumulative_average() (in module pytransit.stat_tools), [1]

D

 	
 	dberndiff() (in module pytransit.stat_tools), [1]

 	dbinomdiff() (in module pytransit.stat_tools), [1]

 	
 	desc (pytransit.tnseq_tools.Gene attribute), [1]

 	dirname() (in module pytransit.transit_tools), [1]

E

 	
 	ecdf() (in module pytransit.norm_tools), [1]

 	(pytransit.norm_tools.AdaptiveBGCNorm method), [1]

 	(pytransit.norm_tools.BetaGeomNorm method), [1]

 	EmpHistNorm (class in pytransit.norm_tools), [1]

 	
 	empirical_theta() (in module pytransit.norm_tools), [1]

 	(pytransit.norm_tools.TTRNorm method), [1]

 	end (pytransit.tnseq_tools.Gene attribute), [1]

 	ExpectedRuns() (in module pytransit.tnseq_tools), [1]

F

 	
 	F_mean_diff_dict() (in module pytransit.stat_tools), [1]

 	F_mean_diff_flat() (in module pytransit.stat_tools), [1]

 	F_shuffle_dict_libraries() (in module pytransit.stat_tools), [1]

 	F_shuffle_flat() (in module pytransit.stat_tools), [1]

 	F_sum_diff_dict() (in module pytransit.stat_tools), [1]

 	
 	F_sum_diff_flat() (in module pytransit.stat_tools), [1]

 	fact() (in module pytransit.stat_tools), [1]

 	fetch_name() (in module pytransit.transit_tools), [1]

 	FWER_Bayes() (in module pytransit.stat_tools), [1]

 	Fzinfnb() (in module pytransit.norm_tools), [1]

 	(pytransit.norm_tools.EmpHistNorm static method), [1]

G

 	
 	Gene (class in pytransit.tnseq_tools), [1]

 	Genes (class in pytransit.tnseq_tools), [1]

 	genes (pytransit.tnseq_tools.Genes attribute), [1]

 	get_coordinate_map() (in module pytransit.tnseq_tools), [1]

 	get_data() (in module pytransit.tnseq_tools), [1]

 	get_data_stats() (in module pytransit.tnseq_tools), [1]

 	get_data_w_genome() (in module pytransit.tnseq_tools), [1]

 	get_data_zero_fill() (in module pytransit.tnseq_tools), [1]

 	get_extended_pos_hash() (in module pytransit.transit_tools), [1]

 	get_extended_pos_hash_gff() (in module pytransit.tnseq_tools), [1]

 	get_extended_pos_hash_pt() (in module pytransit.tnseq_tools), [1]

 	get_file_types() (in module pytransit.tnseq_tools), [1]

 	get_gap_span() (pytransit.tnseq_tools.Gene method), [1]

 	get_gene_info() (in module pytransit.tnseq_tools), [1]

 	(in module pytransit.transit_tools), [1]

 	get_gene_info_gff() (in module pytransit.tnseq_tools), [1]

 	get_gene_info_pt() (in module pytransit.tnseq_tools), [1]

 	get_gene_span() (pytransit.tnseq_tools.Gene method), [1]

 	get_genes_in_range() (in module pytransit.tnseq_tools), [1]

 	get_lib_data_dict() (in module pytransit.stat_tools), [1]

 	
 	get_pos_hash() (in module pytransit.tnseq_tools), [1]

 	(in module pytransit.transit_tools), [1]

 	get_pos_hash_gff() (in module pytransit.tnseq_tools), [1]

 	get_pos_hash_pt() (in module pytransit.tnseq_tools), [1]

 	get_unknown_file_types() (in module pytransit.tnseq_tools), [1]

 	get_validated_data() (in module pytransit.transit_tools), [1]

 	get_wig_stats() (in module pytransit.tnseq_tools), [1]

 	getE1() (in module pytransit.tnseq_tools), [1]

 	getE2() (in module pytransit.tnseq_tools), [1]

 	getGamma() (in module pytransit.tnseq_tools), [1]

 	getR1() (in module pytransit.tnseq_tools), [1]

 	getR2() (in module pytransit.tnseq_tools), [1]

 	getTabTableData() (in module pytransit.transit_tools), [1]

 	global_insertion() (pytransit.tnseq_tools.Genes method), [1]

 	global_phi() (pytransit.tnseq_tools.Genes method), [1]

 	global_reads() (pytransit.tnseq_tools.Genes method), [1]

 	global_run() (pytransit.tnseq_tools.Genes method), [1]

 	global_sites() (pytransit.tnseq_tools.Genes method), [1]

 	global_theta() (pytransit.tnseq_tools.Genes method), [1]

 	griffin_analysis() (in module pytransit.tnseq_tools), [1]

 	GumbelCDF() (in module pytransit.tnseq_tools), [1]

H

 	
 	HDI_from_MCMC() (in module pytransit.stat_tools), [1]

I

 	
 	ignoreCodon (pytransit.tnseq_tools.Genes attribute), [1]

 	
 	include_nc (pytransit.tnseq_tools.Genes attribute), [1]

 	isEven() (in module pytransit.stat_tools), [1]

L

 	
 	local_gap_span() (pytransit.tnseq_tools.Genes method), [1]

 	local_gene_span() (pytransit.tnseq_tools.Genes method), [1]

 	local_insertions() (pytransit.tnseq_tools.Genes method), [1]

 	local_phis() (pytransit.tnseq_tools.Genes method), [1]

 	local_reads() (pytransit.tnseq_tools.Genes method), [1]

 	local_runs() (pytransit.tnseq_tools.Genes method), [1]

 	
 	local_sites() (pytransit.tnseq_tools.Genes method), [1]

 	local_thetas() (pytransit.tnseq_tools.Genes method), [1]

 	loess() (in module pytransit.stat_tools), [1]

 	loess_correction() (in module pytransit.stat_tools), [1]

 	log_fac() (in module pytransit.stat_tools), [1]

 	loglik() (in module pytransit.stat_tools), [1]

M

 	
 	maxrun() (in module pytransit.tnseq_tools), [1]

 	minread (pytransit.tnseq_tools.Genes attribute), [1]

 	
 	multinomial() (in module pytransit.stat_tools), [1]

 	my_perm() (in module pytransit.stat_tools), [1]

N

 	
 	name (pytransit.norm_tools.AdaptiveBGCNorm attribute), [1]

 	(pytransit.norm_tools.BetaGeomNorm attribute), [1]

 	(pytransit.norm_tools.EmpHistNorm attribute), [1]

 	(pytransit.norm_tools.NZMeanNorm attribute), [1]

 	(pytransit.norm_tools.NoNorm attribute), [1]

 	(pytransit.norm_tools.NormMethod attribute), [1]

 	(pytransit.norm_tools.QuantileNorm attribute), [1]

 	(pytransit.norm_tools.TTRNorm attribute), [1]

 	(pytransit.norm_tools.TotReadsNorm attribute), [1]

 	(pytransit.norm_tools.ZeroInflatedNBNorm attribute), [1]

 	(pytransit.tnseq_tools.Gene attribute), [1]

 	NoNorm (class in pytransit.norm_tools), [1]

 	norm (pytransit.tnseq_tools.Genes attribute), [1]

 	norm() (in module pytransit.stat_tools), [1]

 	
 	norm_to_target() (in module pytransit.norm_tools), [1]

 	normalize() (pytransit.norm_tools.AdaptiveBGCNorm static method), [1]

 	(pytransit.norm_tools.BetaGeomNorm static method), [1]

 	(pytransit.norm_tools.EmpHistNorm static method), [1]

 	(pytransit.norm_tools.NZMeanNorm static method), [1]

 	(pytransit.norm_tools.NoNorm static method), [1]

 	(pytransit.norm_tools.NormMethod static method), [1]

 	(pytransit.norm_tools.QuantileNorm static method), [1]

 	(pytransit.norm_tools.TTRNorm static method), [1]

 	(pytransit.norm_tools.TotReadsNorm static method), [1]

 	(pytransit.norm_tools.ZeroInflatedNBNorm static method), [1]

 	normalize_data() (in module pytransit.norm_tools), [1]

 	NormMethod (class in pytransit.norm_tools), [1]

 	nterm (pytransit.tnseq_tools.Genes attribute), [1]

 	NZMeanNorm (class in pytransit.norm_tools), [1]

O

 	
 	orf (pytransit.tnseq_tools.Gene attribute), [1]

 	
 	orf2index (pytransit.tnseq_tools.Genes attribute), [1]

P

 	
 	parse_lib_index() (in module pytransit.stat_tools), [1]

 	parseCoords() (in module pytransit.transit_tools), [1]

 	phi() (pytransit.tnseq_tools.Gene method), [1]

 	phi_coefficient() (in module pytransit.stat_tools), [1]

 	position (pytransit.tnseq_tools.Gene attribute), [1]

 	
 	protTable (pytransit.tnseq_tools.Genes attribute), [1]

 	pytransit (module), [1]

 	pytransit.norm_tools (module), [1]

 	pytransit.stat_tools (module), [1]

 	pytransit.tnseq_tools (module), [1]

 	pytransit.transit_tools (module), [1]

Q

 	
 	qberndiff() (in module pytransit.stat_tools), [1]

 	
 	qbinomdiff() (in module pytransit.stat_tools), [1]

 	QuantileNorm (class in pytransit.norm_tools), [1]

R

 	
 	read_combined_wig() (in module pytransit.tnseq_tools), [1]

 	read_genes() (in module pytransit.tnseq_tools), [1]

 	read_genome() (in module pytransit.tnseq_tools), [1]

 	read_samples_metadata() (in module pytransit.tnseq_tools), [1]

 	reads (pytransit.tnseq_tools.Gene attribute), [1]

 	regress() (in module pytransit.stat_tools), [1]

 	
 	reps (pytransit.tnseq_tools.Genes attribute), [1]

 	resampling() (in module pytransit.stat_tools), [1]

 	runindex() (in module pytransit.tnseq_tools), [1]

 	runs() (in module pytransit.tnseq_tools), [1]

 	runs_w_info() (in module pytransit.tnseq_tools), [1]

 	rv_siteindexes_map() (in module pytransit.tnseq_tools), [1]

S

 	
 	sample_trunc_norm_post() (in module pytransit.stat_tools), [1]

 	ShowAskWarning() (in module pytransit.transit_tools), [1]

 	ShowError() (in module pytransit.transit_tools), [1]

 	
 	ShowMessage() (in module pytransit.transit_tools), [1]

 	start (pytransit.tnseq_tools.Gene attribute), [1]

 	strand (pytransit.tnseq_tools.Gene attribute), [1]

T

 	
 	text_histogram() (in module pytransit.stat_tools), [1]

 	theta() (pytransit.tnseq_tools.Gene method), [1]

 	tosses() (pytransit.tnseq_tools.Genes method), [1]

 	tossify() (in module pytransit.tnseq_tools), [1]

 	total_reads() (pytransit.tnseq_tools.Gene method), [1]

 	(pytransit.tnseq_tools.Genes method), [1]

 	TotReadsNorm (class in pytransit.norm_tools), [1]

 	
 	transformToRange() (in module pytransit.stat_tools), [1]

 	transit_error() (in module pytransit.transit_tools), [1]

 	transit_message() (in module pytransit.transit_tools), [1]

 	tricoeff() (in module pytransit.stat_tools), [1]

 	tricube() (in module pytransit.stat_tools), [1]

 	trimmed_empirical_mu() (in module pytransit.norm_tools), [1]

 	(pytransit.norm_tools.TTRNorm method), [1]

 	TTRNorm (class in pytransit.norm_tools), [1]

V

 	
 	validate_annotation() (in module pytransit.transit_tools), [1]

 	validate_both_datasets() (in module pytransit.transit_tools), [1]

 	validate_control_datasets() (in module pytransit.transit_tools), [1]

 	
 	validate_filetypes() (in module pytransit.transit_tools), [1]

 	validate_transposons_used() (in module pytransit.transit_tools), [1]

 	validate_wig_format() (in module pytransit.transit_tools), [1]

 	VarR() (in module pytransit.tnseq_tools), [1]

W

 	
 	wigList (pytransit.tnseq_tools.Genes attribute), [1]

Z

 	
 	ZeroInflatedNBNorm (class in pytransit.norm_tools), [1]

 	
 	zinfnb_factors() (in module pytransit.norm_tools), [1]

pytransit.analysis package

Submodules

pytransit.analysis.base module

pytransit.analysis.binomial module

pytransit.analysis.example module

pytransit.analysis.griffin module

pytransit.analysis.gumbel module

pytransit.analysis.hmm module

pytransit.analysis.rankproduct module

pytransit.analysis.resampling module

pytransit.analysis.tn5gaps module

pytransit.analysis.anova module

Module contents

pytransit package

Subpackages

	pytransit.analysis package
	Submodules

	pytransit.analysis.base module

	pytransit.analysis.binomial module

	pytransit.analysis.example module

	pytransit.analysis.griffin module

	pytransit.analysis.gumbel module

	pytransit.analysis.hmm module

	pytransit.analysis.rankproduct module

	pytransit.analysis.resampling module

	pytransit.analysis.tn5gaps module

	pytransit.analysis.anova module

	Module contents

Submodules

pytransit.draw_trash module

pytransit.fileDisplay module

pytransit.images module

pytransit.norm_tools module

	
class pytransit.norm_tools.AdaptiveBGCNorm

	Bases: pytransit.norm_tools.NormMethod

	
cleaninfgeom(rho)

	Returns a ‘clean’ output from the geometric distribution.

	
ecdf(x)

	Calculates an empirical CDF of the given data.

	
name = 'aBGC'

	

	
static normalize(data, wigList=[], annotationPath='', doTotReads=True, bgsamples=200000)

	Returns the normalized data using the aBGC method.

	Parameters

	
	data (numpy array) – (K,N) numpy array defining read-counts at N sites
for K datasets.

	doTotReads (bool) – Boolean specifying whether to do TTR normalization as well.

	bgsamples (int) – Integeer specifying how many samples to take.

	Returns

	Array with the normalized data.

	Return type

	numpy array

	Example

	>>> import pytransit.norm_tools as norm_tools
>>> import pytransit.tnseq_tools as tnseq_tools
>>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
>>> print(data)
array([[0., 0., 0., ..., 0., 0., 0.],
 [0., 0., 0., ..., 0., 0., 0.]])
>>> normdata = norm_tools.aBGC_norm(data)
>>> print(normdata)
array([[0., 0., 0., ..., 0., 0., 0.],
 [0., 0., 0., ..., 0., 0., 0.]])

See also

normalize_data

	
class pytransit.norm_tools.BetaGeomNorm

	Bases: pytransit.norm_tools.NormMethod

	
cleaninfgeom(rho)

	Returns a ‘clean’ output from the geometric distribution.

	
ecdf(x)

	Calculates an empirical CDF of the given data.

	
name = 'betageom'

	

	
static normalize(data, wigList=[], annotationPath='', doTTR=True, bgsamples=200000)

	Returns normalized data according to the BGC method.

	Parameters

	
	data (numpy array) – (K,N) numpy array defining read-counts at N sites
for K datasets.

	doTTR (bool) – Boolean specifying whether to do TTR norm as well.

	bgsamples (int) – Integer specifying how many samples to take.

	Returns

	Array with the data normalized using the betageom method.

	Return type

	numpy array

	Example

	>>> import pytransit.norm_tools as norm_tools
>>> import pytransit.tnseq_tools as tnseq_tools
>>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
>>> print(data)
array([[0., 0., 0., ..., 0., 0., 0.],
 [0., 0., 0., ..., 0., 0., 0.]])
>>> normdata = norm_tools.betageom_norm(data)
>>> print(normdata)
[[0. 0. 0. ..., 0. 0. 0.]
 [0. 0. 0. ..., 0. 0. 0.]]

See also

normalize_data

	
class pytransit.norm_tools.EmpHistNorm

	Bases: pytransit.norm_tools.NormMethod

	
static Fzinfnb(params, args)

	Objective function for the zero-inflated NB method.

	
name = 'emphist'

	

	
static normalize(data, wigList=[], annotationPath='')

	Returns the normalized data, using the empirical hist method.

	Parameters

	
	wigList (list) – List of paths to wig formatted datasets.

	annotationPath (str) – Path to annotation in .prot_table or GFF3 format.

	Returns

	Array with the normalization factors for the emphist method.

	Return type

	numpy array

	Example

	>>> import pytransit.norm_tools as norm_tools
>>> import pytransit.tnseq_tools as tnseq_tools
>>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
>>> print(data)
array([[0., 0., 0., ..., 0., 0., 0.],
 [0., 0., 0., ..., 0., 0., 0.]])
>>> factors = norm_tools.emphist_factors(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"], "transit/genomes/H37Rv.prot_table")
>>> print(factors)
array([[1.],
 [0.63464722]])

See also

normalize_data

	
pytransit.norm_tools.Fzinfnb(params, args)

	Objective function for the zero-inflated NB method.

	
class pytransit.norm_tools.NZMeanNorm

	Bases: pytransit.norm_tools.NormMethod

	
name = 'nzmean'

	

	
static normalize(data, wigList=[], annotationPath='')

	Returns the normalization factors for the data, using the NZMean method.

	Parameters

	data (numpy array) – (K,N) numpy array defining read-counts at N sites
for K datasets.

	Returns

	Array with the normalization factors for the nzmean method.

	Return type

	numpy array

	Example

	>>> import pytransit._tools.norm_tools as norm_tools
>>> import pytransit.tnseq_tools as tnseq_tools
>>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
>>> print(data)
array([[0., 0., 0., ..., 0., 0., 0.],
 [0., 0., 0., ..., 0., 0., 0.]])
>>> factors = norm_tools.nzmean_factors(data)
>>> print(factors)
array([[1.14836149],
 [0.88558737]])

See also

normalize_data

	
class pytransit.norm_tools.NoNorm

	Bases: pytransit.norm_tools.NormMethod

	
name = 'nonorm'

	

	
static normalize(data, wigList=[], annotationPath='')

	

	
class pytransit.norm_tools.NormMethod

	
	
name = 'undefined'

	

	
static normalize()

	

	
class pytransit.norm_tools.QuantileNorm

	Bases: pytransit.norm_tools.NormMethod

	
name = 'quantile'

	

	
static normalize(data, wigList=[], annotationPath='')

	Performs Quantile Normalization as described by Bolstad et al. 2003

	Parameters

	data (numpy array) – (K,N) numpy array defining read-counts at N sites
for K datasets.

	Returns

	Array with the data normalized by the quantile normalization method.

	Return type

	numpy array

	Example

	>>> import pytransit.norm_tools as norm_tools
>>> import pytransit.tnseq_tools as tnseq_tools
>>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
>>> print(data)
array([[0., 0., 0., ..., 0., 0., 0.],
 [0., 0., 0., ..., 0., 0., 0.]])
>>> normdata = norm_tools.quantile_norm(data)
>>> print(normdata)

See also

normalize_data

	
class pytransit.norm_tools.TTRNorm

	Bases: pytransit.norm_tools.NormMethod

	
empirical_theta()

	Calculates the observed density of the data.

This is used as an estimate insertion density by some normalization methods.
May be improved by more sophisticated ways later on.

	Parameters

	data (numpy array) –
	numpy array defining read-counts at N sites.

	Returns

	Density of the given dataset.

	Return type

	float

	Example

	>>> import pytransit.tnseq_tools as tnseq_tools
>>> import pytransit.norm_tools as norm_tools
>>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
>>> print(data)
array([[0., 0., 0., ..., 0., 0., 0.],
 [0., 0., 0., ..., 0., 0., 0.]])
>>> theta = norm_tools.empirical_theta(data)
>>> print(theta)
0.467133570136

See also

TTR_factors

	
name = 'emphist'

	

	
static normalize(data, wigList=[], annotationPath='', thetaEst=<function empirical_theta>, muEst=<function trimmed_empirical_mu>, target=100.0)

	Returns the normalization factors for the data, using the TTR method.

	Parameters

	
	data (numpy array) – (K,N) numpy array defining read-counts at N sites
for K datasets.

	thetaEst (function) – Function used to estimate density. Should take a list
of counts as input.

	muEst (function) – Function used to estimate mean count. Should take a list
of counts as input.

	Returns

	Array with the normalization factors for the TTR method.

	Return type

	numpy array

	Example

	>>> import pytransit.norm_tools as norm_tools
>>> import pytransit.tnseq_tools as tnseq_tools
>>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
>>> print(data)
array([[0., 0., 0., ..., 0., 0., 0.],
 [0., 0., 0., ..., 0., 0., 0.]])
>>> factors = norm_tools.TTR_factors(data)
>>> print(factors)
array([[1.],
 [0.62862886]])

See also

normalize_data

	
trimmed_empirical_mu(t=0.05)

	Estimates the trimmed mean of the data.

This is used as an estimate of mean count by some normalization methods.
May be improved by more sophisticated ways later on.

	Parameters

	
	data (numpy array) –
	numpy array defining read-counts at N sites.

	t (float) – Float specifying fraction of start and end to trim.

	Returns

	(Trimmed) Mean of the given dataset.

	Return type

	float

	Example

	>>> import pytransit.tnseq_tools as tnseq_tools
>>> import pytransit.norm_tools as norm_tools
>>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
>>> print(data)
array([[0., 0., 0., ..., 0., 0., 0.],
 [0., 0., 0., ..., 0., 0., 0.]])
>>> mu = norm_tools.trimmed_empirical_mu(data)
>>> print(mu)
120.73077107

See also

TTR_factors

	
class pytransit.norm_tools.TotReadsNorm

	Bases: pytransit.norm_tools.NormMethod

	
name = 'totreads'

	

	
static normalize(data, wigList=[], annotationPath='')

	Returns the normalization factors for the data, using the total reads
method.

	Parameters

	data (numpy array) – (K,N) numpy array defining read-counts at N sites
for K datasets.

	Returns

	Array with the normalization factors for the totreads method.

	Return type

	numpy array

	Example

	>>> import pytransit.norm_tools as norm_tools
>>> import pytransit.tnseq_tools as tnseq_tools
>>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
>>> print(data)
array([[0., 0., 0., ..., 0., 0., 0.],
 [0., 0., 0., ..., 0., 0., 0.]])
>>> factors = norm_tools.totreads_factors(data)
>>> print(factors)
array([[1.2988762],
 [0.8129396]])

See also

normalize_data

	
class pytransit.norm_tools.ZeroInflatedNBNorm

	Bases: pytransit.norm_tools.NormMethod

	
name = 'zinfb'

	

	
static normalize(data, wigList=[], annotationPath='')

	Returns the normalization factors for the data using the zero-inflated
negative binomial method.

	Parameters

	data (numpy array) – (K,N) numpy array defining read-counts at N sites
for K datasets.

	Returns

	Array with the normalization factors for the zinfnb method.

	Return type

	numpy array

	Example

	>>> import pytransit.norm_tools as norm_tools
>>> import pytransit.tnseq_tools as tnseq_tools
>>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
>>> print(data)
array([[0., 0., 0., ..., 0., 0., 0.],
 [0., 0., 0., ..., 0., 0., 0.]])
>>> factors = norm_tools.zinfnb_factors(data)
>>> print(factors)
[[0.0121883]
 [0.00747111]]

See also

normalize_data

	
pytransit.norm_tools.cleaninfgeom(x, rho)

	Returns a ‘clean’ output from the geometric distribution.

	
pytransit.norm_tools.ecdf(S, x)

	Calculates an empirical CDF of the given data.

	
pytransit.norm_tools.empirical_theta(X)

	Calculates the observed density of the data.

This is used as an estimate insertion density by some normalization methods.
May be improved by more sophisticated ways later on.

	Parameters

	data (numpy array) –
	numpy array defining read-counts at N sites.

	Returns

	Density of the given dataset.

	Return type

	float

	Example

	>>> import pytransit.tnseq_tools as tnseq_tools
>>> import pytransit.norm_tools as norm_tools
>>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
>>> print(data)
array([[0., 0., 0., ..., 0., 0., 0.],
 [0., 0., 0., ..., 0., 0., 0.]])
>>> theta = norm_tools.empirical_theta(data)
>>> print(theta)
0.467133570136

See also

TTR_factors

	
pytransit.norm_tools.norm_to_target(data, target)

	Returns factors to normalize the data to the given target value.

	Parameters

	
	data (numpy array) – (K,N) numpy array defining read-counts at N sites
for K datasets.

	target (float) – Floating point specifying the target for the mean of the data/

	Returns

	Array with the factors necessary to normalize mean to target.

	Return type

	numpy array

	Example

	>>> import pytransit.norm_tools as norm_tools
>>> import pytransit.tnseq_tools as tnseq_tools
>>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
>>> print(data)
array([[0., 0., 0., ..., 0., 0., 0.],
 [0., 0., 0., ..., 0., 0., 0.]])
>>> factors = norm_tools.norm_to_target(data, 100)
>>> print(factors)
[[1.8548104]
 [1.16088726]]

See also

normalize_data

	
pytransit.norm_tools.normalize_data(data, method='nonorm', wigList=[], annotationPath='')

	Normalizes the numpy array by the given normalization method.

	Parameters

	
	data (numpy array) – (K,N) numpy array defining read-counts at N sites
for K datasets.

	method (str) – Name of the desired normalization method.

	wigList (list) – List of paths for the desired wig-formatted datasets.

	annotationPath (str) – Path to the prot_table annotation file.

	Returns

	Array with the normalized data.
list: List containing the normalization factors. Empty if not used.

	Return type

	numpy array

	Example

	>>> import pytransit.norm_tools as norm_tools
>>> import pytransit.tnseq_tools as tnseq_tools
>>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
>>> print(data)
array([[0., 0., 0., ..., 0., 0., 0.],
 [0., 0., 0., ..., 0., 0., 0.]])
(normdata, normfactors) = norm_tools.normalize_data(data, "TTR") # Some methods require annotation and path to wig files.
>>> print(normfactors)
array([[1.],
 [0.62862886]])
>> print(normdata)
array([[0., 0., 0., ..., 0., 0., 0.],
 [0., 0., 0., ..., 0., 0., 0.]])

Note

Some normalization methods require the wigList and annotationPath arguments.

	
pytransit.norm_tools.trimmed_empirical_mu(X, t=0.05)

	Estimates the trimmed mean of the data.

This is used as an estimate of mean count by some normalization methods.
May be improved by more sophisticated ways later on.

	Parameters

	
	data (numpy array) –
	numpy array defining read-counts at N sites.

	t (float) – Float specifying fraction of start and end to trim.

	Returns

	(Trimmed) Mean of the given dataset.

	Return type

	float

	Example

	>>> import pytransit.tnseq_tools as tnseq_tools
>>> import pytransit.norm_tools as norm_tools
>>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
>>> print(data)
array([[0., 0., 0., ..., 0., 0., 0.],
 [0., 0., 0., ..., 0., 0., 0.]])
>>> mu = norm_tools.trimmed_empirical_mu(data)
>>> print(mu)
120.73077107

See also

TTR_factors

	
pytransit.norm_tools.zinfnb_factors(data)

	Returns the normalization factors for the data using the zero-inflated
negative binomial method.

	Parameters

	data (numpy array) – (K,N) numpy array defining read-counts at N sites
for K datasets.

	Returns

	Array with the normalization factors for the zinfnb method.

	Return type

	numpy array

	Example

	>>> import pytransit.norm_tools as norm_tools
>>> import pytransit.tnseq_tools as tnseq_tools
>>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
>>> print(data)
array([[0., 0., 0., ..., 0., 0., 0.],
 [0., 0., 0., ..., 0., 0., 0.]])
>>> factors = norm_tools.zinfnb_factors(data)
>>> print(factors)
[[0.0121883]
 [0.00747111]]

See also

normalize_data

pytransit.qcDisplay module

pytransit.stat_tools module

	
pytransit.stat_tools.BH_fdr_correction(X)

	Adjusts p-values using the Benjamini Hochberg procedure

	
pytransit.stat_tools.FWER_Bayes(X)

	

	
pytransit.stat_tools.F_mean_diff_dict(*args, **kwargs)

	

	
pytransit.stat_tools.F_mean_diff_flat(*args, **kwargs)

	

	
pytransit.stat_tools.F_shuffle_dict_libraries(*args, **kwargs)

	

	
pytransit.stat_tools.F_shuffle_flat(*args, **kwargs)

	

	
pytransit.stat_tools.F_sum_diff_dict(*args, **kwargs)

	

	
pytransit.stat_tools.F_sum_diff_flat(*args, **kwargs)

	

	
pytransit.stat_tools.HDI_from_MCMC(posterior_samples, credible_mass=0.95)

	

	
pytransit.stat_tools.bFDR(X)

	

	
pytransit.stat_tools.bayesian_ess_thresholds(Z_raw, ALPHA=0.05)

	Returns Essentiality Thresholds using a BH-like procedure

	
pytransit.stat_tools.binom(k, n, p)

	Binomial distribution. Uses Normal approximation for large ‘n’

	
pytransit.stat_tools.binom_cdf(k, n, p)

	CDF of the binomial distribution

	
pytransit.stat_tools.binom_test(k, n, p, type='two-sided')

	Does a binomial test given success, trials and probability.

	
pytransit.stat_tools.boxcoxTable(X, minlambda, maxlambda, dellambda)

	Returns a table of (loglik function, lambda) pairs
for the data.

	
pytransit.stat_tools.boxcoxtransform(x, lambdax)

	Performs a box-cox transformation to data vector X.
WARNING: elements of X should be all positive!
Fixed: ‘>’ has changed to ‘<’

	
pytransit.stat_tools.comb(n, k)

	

	
pytransit.stat_tools.comb1(n, k)

	

	
pytransit.stat_tools.combine_lib_dicts(L1, L2)

	

	
pytransit.stat_tools.cumulative_average(new_x, n, prev_avg)

	

	
pytransit.stat_tools.dberndiff(d, peq, p01, p10)

	

	
pytransit.stat_tools.dbinomdiff(d, n, P)

	

	
pytransit.stat_tools.fact(n)

	

	
pytransit.stat_tools.get_lib_data_dict(data1, ctrl_lib_str, data2, exp_lib_str, nTAs)

	

	
pytransit.stat_tools.isEven(x)

	

	
pytransit.stat_tools.loess(X, Y, h=10000)

	

	
pytransit.stat_tools.loess_correction(X, Y, h=10000, window=100)

	

	
pytransit.stat_tools.log_fac(n)

	

	
pytransit.stat_tools.loglik(X, lambdax)

	Computes the log-likelihood function for a transformed vector Xtransform.

	
pytransit.stat_tools.multinomial(K, P)

	

	
pytransit.stat_tools.my_perm(d, n)

	

	
pytransit.stat_tools.norm(x, mu, sigma)

	Normal distribution

	
pytransit.stat_tools.parse_lib_index(nData, libstr, nTAs)

	

	
pytransit.stat_tools.phi_coefficient(X, Y)

	Calculates the phi-coefficient for two bool arrays

	
pytransit.stat_tools.qberndiff(d, peq, p01, p10)

	

	
pytransit.stat_tools.qbinomdiff(d, n, peq, p01, p10)

	

	
pytransit.stat_tools.regress(X, Y)

	Performs linear regression given two vectors, X, Y.

	
pytransit.stat_tools.resampling(data1, data2, S=10000, testFunc=<function F_mean_diff_flat>, permFunc=<function F_shuffle_flat>, adaptive=False, lib_str1='', lib_str2='', PC=1)

	Does a permutation test on two sets of data.

Performs the resampling / permutation test given two sets of data using a
function defining the test statistic and a function defining how to permute
the data.

	Parameters

	
	ar – List or numpy array with the first set of observations.

	data2 – List or numpy array with the second set of observations.

	S – Number of permutation tests (or samples) to obtain.

	testFunc – Function defining the desired test statistic. Should accept
two lists as arguments. Default is difference in means between
the observations.

	permFunc – Function defining the way to permute the data. Should accept
one argument, the combined set of data. Default is random
shuffle.

	adaptive – Cuts-off resampling early depending on significance.

	Returns

	
	Tuple with described values

	
	test_obs – Test statistic of observation.

	mean1 – Arithmetic mean of first set of data.

	mean2 – Arithmetic mean of second set of data.

	log2FC – Normalized log2FC the means.

	pval_ltail – Lower tail p-value.

	pval_utail – Upper tail p-value.

	pval_2tail – Two-tailed p-value.

	test_sample – List of samples of the test statistic.

	Example

	>>> import pytransit.stat_tools as stat_tools
>>> import numpy
>>> X = numpy.random.random(100)
>>> Y = numpy.random.random(100)
>>> (test_obs, mean1, mean2, log2fc, pval_ltail, pval_utail, pval_2tail, test_sample) = stat_tools.resampling(X,Y)
>>> pval_2tail
0.2167
>>> test_sample[:3]
[0.076213992904990535, -0.0052513291091412784, -0.0038425140184765172]

	
pytransit.stat_tools.sample_trunc_norm_post(data, S, mu0, s20, k0, nu0)

	

	
pytransit.stat_tools.text_histogram(X, nBins=20, resolution=200, obs=None)

	

	
pytransit.stat_tools.transformToRange(X, new_min, new_max, old_min=None, old_max=None)

	

	
pytransit.stat_tools.tricoeff(N, S)

	

	
pytransit.stat_tools.tricube(X)

	

pytransit.tnseq_tools module

	
pytransit.tnseq_tools.ExpectedRuns(n, pnon)

	Expected value of the run of non=insertions (Schilling, 1990):

ER_n = log(1/p)(nq) + gamma/ln(1/p) -1/2 + r1(n) + E1(n)

	Parameters

	
	n (int) – Integer representing the number of sites.

	pins (float) – Floating point number representing the probability of non-insertion.

	Returns

	Size of the expected maximum run.

	Return type

	float

	
class pytransit.tnseq_tools.Gene(orf, name, desc, reads, position, start=0, end=0, strand='')

	Class defining a gene with useful attributes for TnSeq analysis.

This class helps define a “gene” with attributes that facilitate TnSeq
analysis. Here “gene” can be defined to be any genomic region. The Genes
class (with an s) can be used to define list of Gene objects with more
useful operations on the “genome” level.

	
orf

	A string defining the ID of the gene.

	
name

	A string with the human readable name of the gene.

	
desc

	A string with the description of the gene.

	
reads

	List of lists of read-counts in possible site replicate dataset.

	
position

	List of coordinates of the possible sites.

	
start

	An integer defining the start coordinate for the gene.

	
end

	An integer defining the end coordinate for the gene.

	
strand

	A string defining the strand of the gene.

	Example

	>>> import pytransit.tnseq_tools as tnseq_tools
>>> G = tnseq_tools.Gene("Rv0001", "dnaA", "DNA Replication A", [[0,0,0,0,1,3,0,1]], [1,21,32,37,45,58,66,130], strand="+")
>>> print(G)
Rv0001 (dnaA) k=3 n=8 r=4 theta=0.37500
>>> print(G.phi())
0.625
>>> print(G.tosses)
array([0., 0., 0., 0., 1., 1., 0., 1.])

See also

Genes

	
__eq__(other)

	Compares against other gene object.

	Returns

	True if the gene objects have same orf id.

	Return type

	bool

	
__ge__(other)

	x.__ge__(y) <==> x>=y

	
__getitem__(i)

	Return read-counts at position i.

	Parameters

	i (int) – integer of the index of the desired site.

	Returns

	Reads at position i.

	Return type

	list

	
__gt__(other)

	x.__gt__(y) <==> x>y

	
__le__(other)

	x.__le__(y) <==> x<=y

	
__lt__(other)

	Compares against other gene object.

	Returns

	True if the gene object id is less than the other.

	Return type

	bool

	
__ne__(other)

	x.__ne__(y) <==> x!=y

	
__str__()

	Return a string representation of the object.

	Returns

	Human readable string with some of the attributes.

	Return type

	str

	
get_gap_span()

	Returns the span of the maxrun of the gene (i.e. number of nucleotides).

	Returns

	Number of nucleotides spanned by the max run.

	Return type

	int

	
get_gene_span()

	Returns the number of nucleotides spanned by the gene.

	Returns

	Number of nucleotides spanned by the gene’s sites.

	Return type

	int

	
phi()

	Return the non-insertion density (“phi”) for the gene.

	Returns

	Non-insertion density (i.e. 1 - theta)

	Return type

	float

	
theta()

	Return the insertion density (“theta”) for the gene.

	Returns

	Density of the gene (i.e. k/n)

	Return type

	float

	
total_reads()

	Return the total reads for the gene.

	Returns

	Total sum of read-counts.

	Return type

	float

	
class pytransit.tnseq_tools.Genes(wigList, annotation, norm='nonorm', reps='All', minread=1, ignoreCodon=True, nterm=0.0, cterm=0.0, include_nc=False, data=[], position=[], genome='', transposon='himar1')

	Class defining a list of Gene objects with useful attributes for TnSeq
analysis.

This class helps define a list of Gene objects with attributes that
facilitate TnSeq analysis. Includes methods that calculate useful statistics
and even rudamentary analysis of essentiality.

	
wigList

	List of paths to datasets in .wig format.

	
protTable

	String with path to annotation in .prot_table format.

	
norm

	String with the normalization used/

	
reps

	String with information on how replicates were handled.

	
minread

	Integer with the minimum magnitude of read-count considered.

	
ignoreCodon

	Boolean defining whether to ignore the start/stop codon.

	
nterm

	Float number of the fraction of the N-terminus to ignore.

	
cterm

	Float number of the fraction of the C-terminus to ignore.

	
include_nc

	Boolean determining whether to include non-coding areas.

	
orf2index

	Dictionary of orf id to index in the genes list.

	
genes

	List of the Gene objects.

	Example

	>>> import pytransit.tnseq_tools as tnseq_tools
>>> G = tnseq_tools.Genes(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"], "transit/genomes/H37Rv.prot_table", norm="TTR")
>>> print(G)
Genes Object (N=3990)
>>> print(G.global_theta())
0.40853707222816626
>>> print(G["Rv0001"] # Lookup like dictionary)
Rv0001 (dnaA) k=0 n=31 r=31 theta=0.00000
>>> print(G[2] # Lookup like list)
Rv0003 (recF) k=5 n=35 r=14 theta=0.14286
>>> print(G[2].reads)
[[62. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0.
 0. 0. 63. 0. 0. 13.
46. 0. 1. 0. 0. 0.
 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0.]
 [3.14314432 67.26328843 0. 0. 0. 0.
 0. 0. 0. 35.20321637 0. 0.
 0. 0. 30.80281433 0. 101.20924707
 0. 23.25926796 0. 16.97297932 8.17217523
 0. 0. 2.51451546 3.77177318 0.62862886
 0. 0. 69.14917502 0. 0. 0.
 0. 0.]]

See also

Gene

	
__contains__(item)

	Defines __contains__ to check if gene exists in the list.

	Parameters

	item (str) – String with the id of the gene.

	Returns

	Boolean with True if item is in the list.

	Return type

	bool

	
__getitem__(i)

	Defines __getitem__ method so that it works as dictionary and list.

	Parameters

	i (int) – Integer or string defining index or orf ID desired.

	Returns

	A gene with the index or ID equal to i.

	Return type

	Gene

	
__len__()

	Defines __len__ returning number of genes.

	Returns

	Number of genes in the list.

	Return type

	int

	
__str__()

	Defines __str__ to print(a generic str with the size of the list.)

	Returns

	Human readable string with number of genes in object.

	Return type

	str

	
global_insertion()

	Returns total number of insertions, i.e. sum of ‘k’ over all genes.

	Returns

	Total sum of reads across all genes.

	Return type

	float

	
global_phi()

	Returns global non-insertion frequency, of the library.

	Returns

	Complement of global theta i.e. 1.0-theta

	Return type

	float

	
global_reads()

	Returns the reads among the library.

	Returns

	List of all the data.

	Return type

	list

	
global_run()

	Returns the run assuming all genes were concatenated together.

	Returns

	Max run across all genes.

	Return type

	int

	
global_sites()

	Returns total number of sites, i.e. sum of ‘n’ over all genes.

	Returns

	Total number of sites across all genes.

	Return type

	int

	
global_theta()

	Returns global insertion frequency, of the library.

	Returns

	Total sites with insertions divided by total sites.

	Return type

	float

	
local_gap_span()

	Returns numpy array with the span of nucleotides of the largest gap,
‘s’, for each gene.

	Returns

	Numpy array with the span of gap for all genes.

	Return type

	narray

	
local_gene_span()

	Returns numpy array with the span of nucleotides of the gene,
‘t’, for each gene.

	Returns

	Numpy array with the span of gene for all genes.

	Return type

	narray

	
local_insertions()

	Returns numpy array with the number of insertions, ‘k’, for each gene.

	Returns

	Numpy array with the number of insertions for all genes.

	Return type

	narray

	
local_phis()

	Returns numpy array of non-insertion frequency, ‘phi’, for each gene.

	Returns

	Numpy array with the complement of density for all genes.

	Return type

	narray

	
local_reads()

	Returns numpy array of lists containing the read counts for each gene.

	Returns

	Numpy array with the list of reads for all genes.

	Return type

	narray

	
local_runs()

	Returns numpy array with maximum run of non-insertions, ‘r’, for each gene.

	Returns

	Numpy array with the max run of non-insertions for all genes.

	Return type

	narray

	
local_sites()

	Returns numpy array with total number of TA sites, ‘n’, for each gene.

	Returns

	Numpy array with the number of sites for all genes.

	Return type

	narray

	
local_thetas()

	Returns numpy array of insertion frequencies, ‘theta’, for each gene.

	Returns

	Numpy array with the density for all genes.

	Return type

	narray

	
tosses()

	Returns list of bernoulli trials, ‘tosses’, representing insertions in the gene.

	Returns

	Sites represented as bernoulli trials with insertions as true.

	Return type

	list

	
total_reads()

	Returns total reads among the library.

	Returns

	Total sum of read-counts accross all genes.

	Return type

	float

	
pytransit.tnseq_tools.GumbelCDF(x, u, B)

	CDF of the Gumbel distribution:

e^(-e^((u-x)/B))

	Parameters

	
	x (int) – Length of the max run.

	u (float) – Location parameter of the Gumbel dist.

	B (float) – Scale parameter of the Gumbel dist.

	Returns

	Cumulative probability o the Gumbel distribution.

	Return type

	float

	
pytransit.tnseq_tools.VarR(n, pnon)

	Variance of the expected run of non-insertons (Schilling, 1990):

\[VarR_n = (pi^2)/(6*ln(1/p)^2) + 1/12 + r2(n) + E2(n)\]

	Parameters

	
	n (int) – Integer representing the number of sites.

	pnon (float) – Floating point number representing the probability of non-insertion.

	Returns

	Variance of the length of the maximum run.

	Return type

	float

	
pytransit.tnseq_tools.check_wig_includes_zeros(wig_list)

	Returns boolean list showing whether the given files include empty sites
(zero) or not.

	Parameters

	wig_list (list) – List of paths to wig files.

	Returns

	List of boolean values.

	Return type

	list

	
pytransit.tnseq_tools.combine_replicates(data, method='Sum')

	Returns list of data merged together.

	Parameters

	
	data (list) – List of numeric (replicate) data to be merged.

	method (str) – How to combine the replicate dataset.

	Returns

	List of numeric dataset now merged together.

	Return type

	list

	
pytransit.tnseq_tools.getE1(n)

	Small Correction term. Defaults to 0.01 for now

	
pytransit.tnseq_tools.getE2(n)

	Small Correction term. Defaults to 0.01 for now

	
pytransit.tnseq_tools.getGamma()

	Euler-Mascheroni constant ~ 0.577215664901

	
pytransit.tnseq_tools.getR1(n)

	Small Correction term. Defaults to 0.000016 for now

	
pytransit.tnseq_tools.getR2(n)

	Small Correction term. Defaults to 0.00006 for now

	
pytransit.tnseq_tools.get_coordinate_map(galign_path, reverse=False)

	Attempts to get mapping of coordinates from galign file.

	Parameters

	
	path (str) – Path to .galign file.

	reverse (bool) – Boolean specifying whether to do A to B or B to A.

	Returns

	Dictionary of coordinate in one file to another file.

	Return type

	dict

	
pytransit.tnseq_tools.get_data(wig_list)

	
	Returns a tuple of (data, position) containing a matrix of raw read-counts

	, and list of coordinates.

	Parameters

	wig_list (list) – List of paths to wig files.

	Returns

	Two lists containing data and positions of the wig files given.

	Return type

	tuple

	Example

	>>> import pytransit.tnseq_tools as tnseq_tools
>>> (data, position) = tnseq_tools.get_data(["data/glycerol_H37Rv_rep1.wig", "data/glycerol_H37Rv_rep2.wig"])
>>> print(data)
array([[0., 0., 0., ..., 0., 0., 0.],
 [0., 0., 0., ..., 0., 0., 0.]])

See also

get_file_types combine_replicates get_data_zero_fill pytransit.norm_tools.normalize_data

	
pytransit.tnseq_tools.get_data_stats(reads)

	

	
pytransit.tnseq_tools.get_data_w_genome(wig_list, genome)

	

	
pytransit.tnseq_tools.get_data_zero_fill(wig_list)

	
	Returns a tuple of (data, position) containing a matrix of raw read counts,

	and list of coordinates. Positions that are missing are filled in as zero.

	Parameters

	wig_list (list) – List of paths to wig files.

	Returns

	Two lists containing data and positions of the wig files given.

	Return type

	tuple

	
pytransit.tnseq_tools.get_extended_pos_hash_gff(path, N=None)

	

	
pytransit.tnseq_tools.get_extended_pos_hash_pt(path, N=None)

	

	
pytransit.tnseq_tools.get_file_types(wig_list)

	Returns the transposon type (himar1/tn5) of the list of wig files.

	Parameters

	wig_list (list) – List of paths to wig files.

	Returns

	List of transposon type (“himar1” or “tn5”).

	Return type

	list

	
pytransit.tnseq_tools.get_gene_info(path)

	Returns a dictionary that maps gene id to gene information.

	Parameters

	path (str) – Path to annotation in .prot_table or GFF3 format.

	Returns

	
	Dictionary of gene id to tuple of information:

	
	name

	description

	start coordinate

	end coordinate

	strand

	Return type

	dict

	
pytransit.tnseq_tools.get_gene_info_gff(path)

	Returns a dictionary that maps gene id to gene information.

	Parameters

	path (str) – Path to annotation in GFF3 format.

	Returns

	
	Dictionary of gene id to tuple of information:

	
	name

	description

	start coordinate

	end coordinate

	strand

	Return type

	dict

	
pytransit.tnseq_tools.get_gene_info_pt(path)

	Returns a dictionary that maps gene id to gene information.

	Parameters

	path (str) – Path to annotation in .prot_table format.

	Returns

	
	Dictionary of gene id to tuple of information:

	
	name

	description

	start coordinate

	end coordinate

	strand

	Return type

	dict

	
pytransit.tnseq_tools.get_genes_in_range(pos_hash, start, end)

	Returns list of genes that occur in a given range of coordinates.

	Parameters

	
	pos_hash (dict) – Dictionary of position to list of genes.

	start (int) – Start coordinate of the desired range.

	end (int) – End coordinate of the desired range.

	Returns

	List of genes that fall within range.

	Return type

	list

	
pytransit.tnseq_tools.get_pos_hash(path)

	Returns a dictionary that maps coordinates to a list of genes that occur at that coordinate.

	Parameters

	path (str) – Path to annotation in .prot_table or GFF3 format.

	Returns

	Dictionary of position to list of genes that share that position.

	Return type

	dict

	
pytransit.tnseq_tools.get_pos_hash_gff(path)

	Returns a dictionary that maps coordinates to a list of genes that occur at that coordinate.

	Parameters

	path (str) – Path to annotation in GFF3 format.

	Returns

	Dictionary of position to list of genes that share that position.

	Return type

	dict

	
pytransit.tnseq_tools.get_pos_hash_pt(path)

	Returns a dictionary that maps coordinates to a list of genes that occur at that coordinate.

	Parameters

	path (str) – Path to annotation in .prot_table format.

	Returns

	Dictionary of position to list of genes that share that position.

	Return type

	dict

	
pytransit.tnseq_tools.get_unknown_file_types(wig_list, transposons)

	

	
pytransit.tnseq_tools.get_wig_stats(path)

	Returns statistics for the given wig file with read-counts.

	Parameters

	path (str) – String with the path to the wig file of interest.

	Returns

	
	Tuple with the following statistical measures:

	
	density

	mean read

	non-zero mean

	non-zero median

	max read

	total reads

	skew

	kurtosis

	Return type

	tuple

	
pytransit.tnseq_tools.griffin_analysis(genes_obj, pins)

	Implements the basic Gumbel analysis of runs of non-insertion, described in Griffin et al. 2011.

This analysis method calculates a p-value of observing the maximun run of
TA sites without insertions in a row (i.e. a “run”, r). Unusually long
runs are indicative of an essential gene or protein domain. Assumes that
there is a constant, global probability of observing an insertion
(tantamount to a Bernoulli probability of success).

	Parameters

	
	genes_obj (Genes) – An object of the Genes class defining the genes.

	pins (float) – The probability of insertion.

	Returns

	
	List of lists with results and information for the genes. The elements of the list are as follows:

	
	ORF ID.

	Gene Name.

	Gene Description.

	Number of TA sites with insertions.

	Number of TA sites.

	Length of largest run of non-insertion.

	Expected run for a gene this size.

	p-value of the observed run.

	Return type

	list

	
pytransit.tnseq_tools.maxrun(lst, item=0)

	Returns the length of the maximum run an item in a given list.

	Parameters

	
	lst (list) – List of numeric items.

	item (float) – Number to look for consecutive runs of.

	Returns

	Length of the maximum run of consecutive instances of item.

	Return type

	int

	
pytransit.tnseq_tools.read_combined_wig(fname)

	Read the combined wig-file generated by Transit
:: Filename -> Tuple([Site], [WigData], [Filename])
Site :: Integer
WigData :: [Number]
Filename :: String

	
pytransit.tnseq_tools.read_genes(fname, descriptions=False)

	(Filename, Options) -> [Gene]
Gene :: {start, end, rv, gene, strand}

	
pytransit.tnseq_tools.read_genome(path)

	Reads in FASTA formatted genome file.

	Parameters

	path (str) – Path to .galign file.

	Returns

	String with the genomic sequence.

	Return type

	string

	
pytransit.tnseq_tools.read_samples_metadata(metadata_file, covarsToRead=[], interactionsToRead=[], condition_name='Condition')

	Filename -> ConditionMap
ConditionMap :: {Filename: Condition}, [{Filename: Covar}], [{Filename: Interaction}]
Condition :: String
Covar :: String
Interaction :: String

	
pytransit.tnseq_tools.runindex(runs)

	Returns a list of the indexes of the start of the runs; complements runs().

	Parameters

	runs (list) – List of numeric data.

	Returns

	List of the index of the runs of non-insertions. Non-zero sites are treated as runs of zero.

	Return type

	list

	
pytransit.tnseq_tools.runs(data)

	Return list of all the runs of consecutive non-insertions.

	Parameters

	data (list) – List of numeric data.

	Returns

	List of the length of the runs of non-insertions. Non-zero sites are treated as runs of zero.

	Return type

	list

	
pytransit.tnseq_tools.runs_w_info(data)

	Return list of all the runs of consecutive non-insertions with the start and end locations.

	Parameters

	data (list) – List of numeric data to check for runs.

	Returns

	List of dictionary from run to length and position information of the tun.

	Return type

	list

	
pytransit.tnseq_tools.rv_siteindexes_map(genes, TASiteindexMap, nterm=0.0, cterm=0.0)

	([Gene], {TAsite: Siteindex}) -> {Rv: Siteindex}

	
pytransit.tnseq_tools.tossify(data)

	Reduces the data into Bernoulli trials (or ‘tosses’) based on whether counts were observed or not.

	Parameters

	data (list) – List of numeric data.

	Returns

	Data represented as bernoulli trials with >0 as true.

	Return type

	list

pytransit.transit_gui module

pytransit.transit_tools module

	
pytransit.transit_tools.ShowAskWarning(MSG='')

	

	
pytransit.transit_tools.ShowError(MSG='')

	

	
pytransit.transit_tools.ShowMessage(MSG='')

	

	
pytransit.transit_tools.aton(aa)

	

	
pytransit.transit_tools.basename(filepath)

	

	
pytransit.transit_tools.cleanargs(rawargs)

	Returns a list and a dictionary with positional and keyword arguments.

	-This function assumes flags must start with a “-” and and cannot be a

	number (but can include them).

	-Flags should either be followed by the value they want to be associated

	with (i.e. -p 5) or will be assigned a value of True in the dictionary.

	-The dictionary will map flags to the name given minus ONE “-” sign in

	front. If you use TWO minus signs in the flag name (i.e. –verbose),
the dictionary key will be the name with ONE minus sign in front
(i.e. {“-verbose”:True}).

	Parameters

	rawargs (list) – List of positional/keyword arguments. As obtained from
sys.argv.

	Returns

	
	List of positional arguments (i.e. arguments without flags),

	in order provided.

	dict: Dictionary mapping flag (key is flag minus the first “-“) and

	their values.

	Return type

	list

	
pytransit.transit_tools.convertToCombinedWig(dataset_list, annotationPath, outputPath, normchoice='nonorm')

	Normalizes the input datasets and outputs the result in CombinedWig format.

	Parameters

	
	dataset_list (list) – List of paths to datasets in .wig format

	annotationPath (str) – Path to annotation in .prot_table or GFF3 format.

	outputPath (str) – Desired output path.

	normchoice (str) – Choice for normalization method.

	
pytransit.transit_tools.convertToGeneCountSummary(dataset_list, annotationPath, outputPath, normchoice='nonorm')

	Normalizes the input datasets and outputs the result in CombinedWig format.

	Parameters

	
	dataset_list (list) – List of paths to datasets in .wig format

	annotationPath (str) – Path to annotation in .prot_table or GFF3 format.

	outputPath (str) – Desired output path.

	normchoice (str) – Choice for normalization method.

	
pytransit.transit_tools.convertToIGV(self, dataset_list, annotationPath, path, normchoice=None)

	

	
pytransit.transit_tools.dirname(filepath)

	

	
pytransit.transit_tools.fetch_name(filepath)

	

	
pytransit.transit_tools.getTabTableData(path, colnames)

	

	
pytransit.transit_tools.get_extended_pos_hash(path)

	Returns a dictionary that maps coordinates to a list of genes that occur at that coordinate.

	Parameters

	path (str) – Path to annotation in .prot_table or GFF3 format.

	Returns

	Dictionary of position to list of genes that share that position.

	Return type

	dict

	
pytransit.transit_tools.get_gene_info(path)

	Returns a dictionary that maps gene id to gene information.

	Parameters

	path (str) – Path to annotation in .prot_table or GFF3 format.

	Returns

	
	Dictionary of gene id to tuple of information:

	
	name

	description

	start coordinate

	end coordinate

	strand

	Return type

	dict

	
pytransit.transit_tools.get_pos_hash(path)

	Returns a dictionary that maps coordinates to a list of genes that occur at that coordinate.

	Parameters

	path (str) – Path to annotation in .prot_table or GFF3 format.

	Returns

	Dictionary of position to list of genes that share that position.

	Return type

	dict

	
pytransit.transit_tools.get_validated_data(wig_list, wxobj=None)

	
	Returns a tuple of (data, position) containing a matrix of raw read-counts

	, and list of coordinates.

	Parameters

	
	wig_list (list) – List of paths to wig files.

	wxobj (object) – wxPython GUI object for warnings

	Returns

	Two lists containing data and positions of the wig files given.

	Return type

	tuple

	Example

	>>> import pytransit.tnseq_tools as tnseq_tools
>>> (data, position) = tnseq_tools.get_validated_data(["data/glycerol_H37Rv_rep1.wig", "data/glycerol_H37Rv_rep2.wig"])
>>> print(data)
array([[0., 0., 0., ..., 0., 0., 0.],
 [0., 0., 0., ..., 0., 0., 0.]])

See also

get_file_types combine_replicates get_data_zero_fill pytransit.norm_tools.normalize_data

	
pytransit.transit_tools.parseCoords(strand, aa_start, aa_end, start, end)

	

	
pytransit.transit_tools.transit_error(text)

	

	
pytransit.transit_tools.transit_message(msg='', prefix='')

	

	
pytransit.transit_tools.validate_annotation(annotation)

	

	
pytransit.transit_tools.validate_both_datasets(ctrldata, expdata)

	

	
pytransit.transit_tools.validate_control_datasets(ctrldata)

	

	
pytransit.transit_tools.validate_filetypes(datasets, transposons, justWarn=True)

	

	
pytransit.transit_tools.validate_transposons_used(datasets, transposons, justWarn=True)

	

	
pytransit.transit_tools.validate_wig_format(wig_list, wxobj=None)

	

pytransit.trash module

pytransit.view_trash module

Module contents

 Source code for functools

"""functools.py - Tools for working with functions and callable objects
"""
Python module wrapper for _functools C module
to allow utilities written in Python to be added
to the functools module.
Written by Nick Coghlan <ncoghlan at gmail.com>
Copyright (C) 2006 Python Software Foundation.
See C source code for _functools credits/copyright

from _functools import partial, reduce

update_wrapper() and wraps() are tools to help write
wrapper functions that can handle naive introspection

WRAPPER_ASSIGNMENTS = ('__module__', '__name__', '__doc__')
WRAPPER_UPDATES = ('__dict__',)
def update_wrapper(wrapper,
 wrapped,
 assigned = WRAPPER_ASSIGNMENTS,
 updated = WRAPPER_UPDATES):
 """Update a wrapper function to look like the wrapped function

 wrapper is the function to be updated
 wrapped is the original function
 assigned is a tuple naming the attributes assigned directly
 from the wrapped function to the wrapper function (defaults to
 functools.WRAPPER_ASSIGNMENTS)
 updated is a tuple naming the attributes of the wrapper that
 are updated with the corresponding attribute from the wrapped
 function (defaults to functools.WRAPPER_UPDATES)
 """
 for attr in assigned:
 setattr(wrapper, attr, getattr(wrapped, attr))
 for attr in updated:
 getattr(wrapper, attr).update(getattr(wrapped, attr, {}))
 # Return the wrapper so this can be used as a decorator via partial()
 return wrapper

def wraps(wrapped,
 assigned = WRAPPER_ASSIGNMENTS,
 updated = WRAPPER_UPDATES):
 """Decorator factory to apply update_wrapper() to a wrapper function

 Returns a decorator that invokes update_wrapper() with the decorated
 function as the wrapper argument and the arguments to wraps() as the
 remaining arguments. Default arguments are as for update_wrapper().
 This is a convenience function to simplify applying partial() to
 update_wrapper().
 """
 return partial(update_wrapper, wrapped=wrapped,
 assigned=assigned, updated=updated)

def total_ordering(cls):
 """Class decorator that fills in missing ordering methods"""
 convert = {
 '__lt__': [('__gt__', lambda self, other: not (self < other or self == other)),
 ('__le__', lambda self, other: self < other or self == other),
 ('__ne__', lambda self, other: not self == other),
 ('__ge__', lambda self, other: not self < other)],
 '__le__': [('__ge__', lambda self, other: not self <= other or self == other),
 ('__lt__', lambda self, other: self <= other and not self == other),
 ('__ne__', lambda self, other: not self == other),
 ('__gt__', lambda self, other: not self <= other)],
 '__gt__': [('__lt__', lambda self, other: not (self > other or self == other)),
 ('__ge__', lambda self, other: self > other or self == other),
 ('__ne__', lambda self, other: not self == other),
 ('__le__', lambda self, other: not self > other)],
 '__ge__': [('__le__', lambda self, other: (not self >= other) or self == other),
 ('__gt__', lambda self, other: self >= other and not self == other),
 ('__ne__', lambda self, other: not self == other),
 ('__lt__', lambda self, other: not self >= other)]
 }
 defined_methods = set(dir(cls))
 roots = defined_methods & set(convert)
 if not roots:
 raise ValueError('must define at least one ordering operation: < > <= >=')
 root = max(roots) # prefer __lt__ to __le__ to __gt__ to __ge__
 for opname, opfunc in convert[root]:
 if opname not in defined_methods:
 opfunc.__name__ = opname
 opfunc.__doc__ = getattr(int, opname).__doc__
 setattr(cls, opname, opfunc)
 return cls

def cmp_to_key(mycmp):
 """Convert a cmp= function into a key= function"""
 class K(object):
 __slots__ = ['obj']
 def __init__(self, obj, *args):
 self.obj = obj
 def __lt__(self, other):
 return mycmp(self.obj, other.obj) < 0
 def __gt__(self, other):
 return mycmp(self.obj, other.obj) > 0
 def __eq__(self, other):
 return mycmp(self.obj, other.obj) == 0
 def __le__(self, other):
 return mycmp(self.obj, other.obj) <= 0
 def __ge__(self, other):
 return mycmp(self.obj, other.obj) >= 0
 def __ne__(self, other):
 return mycmp(self.obj, other.obj) != 0
 def __hash__(self):
 raise TypeError('hash not implemented')
 return K

 All modules for which code is available

	functools

	pytransit.norm_tools

	pytransit.stat_tools

	pytransit.tnseq_tools

	pytransit.transit_tools

 Source code for pytransit.norm_tools

import sys
import numpy
import scipy.stats
import scipy.optimize
import warnings

[docs]class NormMethod:
 name = "undefined"
[docs] @staticmethod
 def normalize():
 raise NotImplemented

[docs]class NZMeanNorm(NormMethod):
 name = "nzmean"

[docs] @staticmethod
 def normalize(data, wigList=[], annotationPath=""):
 """Returns the normalization factors for the data, using the NZMean method.

 Arguments:
 data (numpy array): (K,N) numpy array defining read-counts at N sites
 for K datasets.

 Returns:
 numpy array: Array with the normalization factors for the nzmean method.

 :Example:
 >>> import pytransit._tools.norm_tools as norm_tools
 >>> import pytransit.tnseq_tools as tnseq_tools
 >>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
 >>> print(data)
 array([[0., 0., 0., ..., 0., 0., 0.],
 [0., 0., 0., ..., 0., 0., 0.]])
 >>> factors = norm_tools.nzmean_factors(data)
 >>> print(factors)
 array([[1.14836149],
 [0.88558737]])

 .. seealso:: :class:`normalize_data`

 """
 (K,N) = data.shape
 total_hits = numpy.sum(data,1)
 TAs_hit = numpy.sum(data > 0, 1)
 mean_hits = total_hits/TAs_hit
 grand_total = numpy.sum(mean_hits)
 grand_mean = grand_total/float(K)
 factors = numpy.zeros((K,1))
 factors[:,0] = grand_mean/mean_hits
 data = factors * data
 return (data, factors)

[docs]class TotReadsNorm(NormMethod):
 name = "totreads"

[docs] @staticmethod
 def normalize(data, wigList=[], annotationPath=""):
 """Returns the normalization factors for the data, using the total reads
 method.

 Arguments:
 data (numpy array): (K,N) numpy array defining read-counts at N sites
 for K datasets.

 Returns:
 numpy array: Array with the normalization factors for the totreads method.

 :Example:
 >>> import pytransit.norm_tools as norm_tools
 >>> import pytransit.tnseq_tools as tnseq_tools
 >>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
 >>> print(data)
 array([[0., 0., 0., ..., 0., 0., 0.],
 [0., 0., 0., ..., 0., 0., 0.]])
 >>> factors = norm_tools.totreads_factors(data)
 >>> print(factors)
 array([[1.2988762],
 [0.8129396]])

 .. seealso:: :class:`normalize_data`

 """
 (K,N) = data.shape
 total_hits = numpy.sum(data,1)
 TAs = float(N)
 mean_hits = total_hits/TAs
 grand_total = numpy.sum(mean_hits)
 grand_mean = grand_total/float(K)
 factors = numpy.zeros((K,1))
 factors[:,0] = grand_mean/mean_hits
 data = factors * data
 return (data, factors)

[docs]class TTRNorm(NormMethod):
 name = "emphist"

[docs] def empirical_theta(X):
 """Calculates the observed density of the data.

 This is used as an estimate insertion density by some normalization methods.
 May be improved by more sophisticated ways later on.

 Arguments:
 data (numpy array): (N) numpy array defining read-counts at N sites.

 Returns:
 float: Density of the given dataset.

 :Example:
 >>> import pytransit.tnseq_tools as tnseq_tools
 >>> import pytransit.norm_tools as norm_tools
 >>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
 >>> print(data)
 array([[0., 0., 0., ..., 0., 0., 0.],
 [0., 0., 0., ..., 0., 0., 0.]])
 >>> theta = norm_tools.empirical_theta(data)
 >>> print(theta)
 0.467133570136

 .. seealso:: :class:`TTR_factors`
 """
 return numpy.mean(X > 0)

[docs] def trimmed_empirical_mu(X, t=0.05):
 """Estimates the trimmed mean of the data.

 This is used as an estimate of mean count by some normalization methods.
 May be improved by more sophisticated ways later on.

 Arguments:
 data (numpy array): (N) numpy array defining read-counts at N sites.
 t (float): Float specifying fraction of start and end to trim.

 Returns:
 float: (Trimmed) Mean of the given dataset.

 :Example:
 >>> import pytransit.tnseq_tools as tnseq_tools
 >>> import pytransit.norm_tools as norm_tools
 >>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
 >>> print(data)
 array([[0., 0., 0., ..., 0., 0., 0.],
 [0., 0., 0., ..., 0., 0., 0.]])
 >>> mu = norm_tools.trimmed_empirical_mu(data)
 >>> print(mu)
 120.73077107

 .. seealso:: :class:`TTR_factors`
 """
 return scipy.stats.trim_mean(X[X > 0], t)

[docs] @staticmethod
 def normalize(data, wigList=[], annotationPath="", thetaEst=empirical_theta, muEst=trimmed_empirical_mu, target=100.0):
 """Returns the normalization factors for the data, using the TTR method.

 Arguments:
 data (numpy array): (K,N) numpy array defining read-counts at N sites
 for K datasets.
 thetaEst (function): Function used to estimate density. Should take a list
 of counts as input.
 muEst (function): Function used to estimate mean count. Should take a list
 of counts as input.

 Returns:
 numpy array: Array with the normalization factors for the TTR method.

 :Example:
 >>> import pytransit.norm_tools as norm_tools
 >>> import pytransit.tnseq_tools as tnseq_tools
 >>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
 >>> print(data)
 array([[0., 0., 0., ..., 0., 0., 0.],
 [0., 0., 0., ..., 0., 0., 0.]])
 >>> factors = norm_tools.TTR_factors(data)
 >>> print(factors)
 array([[1.],
 [0.62862886]])

 .. seealso:: :class:`normalize_data`
 """
 K = len(data)
 N = len(data[0])

 factors = numpy.zeros((K,1))
 for j in range(K):
 factors[j] = float(target)/(thetaEst(data[j]) * muEst(data[j]))
 data = factors * data
 return (data, factors)

[docs]class EmpHistNorm(NormMethod):
 name = "emphist"

[docs] @staticmethod
 def Fzinfnb(params, args):
 """Objective function for the zero-inflated NB method."""
 pi, mu, r = params
 Fdata = args
 temp0 = numpy.nan_to_num(numpy.log(pi + scipy.stats.nbinom.pmf(Fdata[Fdata==0], mu, r)))
 tempnz = numpy.nan_to_num(numpy.log(1.0-pi)+scipy.stats.nbinom.logpmf(Fdata[Fdata>0], mu, r))
 negLL = -(numpy.sum(temp0) + numpy.sum(tempnz))
 return negLL

[docs] @staticmethod
 def normalize(data, wigList=[], annotationPath=""):
 """Returns the normalized data, using the empirical hist method.

 Arguments:
 wigList (list): List of paths to wig formatted datasets.
 annotationPath (str): Path to annotation in .prot_table or GFF3 format.

 Returns:
 numpy array: Array with the normalization factors for the emphist method.

 :Example:
 >>> import pytransit.norm_tools as norm_tools
 >>> import pytransit.tnseq_tools as tnseq_tools
 >>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
 >>> print(data)
 array([[0., 0., 0., ..., 0., 0., 0.],
 [0., 0., 0., ..., 0., 0., 0.]])
 >>> factors = norm_tools.emphist_factors(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"], "transit/genomes/H37Rv.prot_table")
 >>> print(factors)
 array([[1.],
 [0.63464722]])

 .. seealso:: :class:`normalize_data`
 """
 from pytransit import tnseq_tools

 G = tnseq_tools.Genes(wigList, annotationPath)
 K = len(wigList)
 temp = []
 for j in range(K):
 reads_per_gene = []
 for gene in G:
 tempdata = numpy.array(gene.reads)
 if len(tempdata[0]) > 0:
 reads_per_gene.append(numpy.sum(tempdata[j,:]))
 temp.append(reads_per_gene)

 temp = numpy.array(temp)

 factors = numpy.ones((K,1))
 for j in range(1, K):
 ii_good = numpy.logical_and(temp[0,:] > 0, temp[j,:] > 0)
 logFC = numpy.log(temp[j,ii_good]/temp[0,ii_good])
 mean = numpy.mean(logFC)
 std = numpy.sqrt(numpy.var(logFC))
 X = numpy.linspace(mean - (5*std), mean + (std*5), 50000)
 R = scipy.stats.gaussian_kde(logFC)
 Y = R(X)
 peakLogFC = X[Y.argmax()]
 if peakLogFC < 0:
 factors[j,0] = numpy.exp(abs(peakLogFC))
 else:
 factors[j,0] = 1.0/numpy.exp(abs(peakLogFC))

 data = factors * data
 return (data, factors)

[docs]class AdaptiveBGCNorm(NormMethod):
 name = "aBGC"

[docs] def ecdf(S, x):
 """Calculates an empirical CDF of the given data."""
 return numpy.sum(S<=x)/float(len(S))

[docs] def cleaninfgeom(x, rho):
 """Returns a 'clean' output from the geometric distribution."""
 if x == float('inf'):
 return scipy.stats.geom.ppf(0.9999999999999999, rho)
 else:
 return x

[docs] @staticmethod
 def normalize(data, wigList=[], annotationPath="", doTotReads = True, bgsamples = 200000):
 """Returns the normalized data using the aBGC method.

 Arguments:
 data (numpy array): (K,N) numpy array defining read-counts at N sites
 for K datasets.
 doTotReads (bool): Boolean specifying whether to do TTR normalization as well.
 bgsamples (int): Integeer specifying how many samples to take.

 Returns:
 numpy array: Array with the normalized data.

 :Example:
 >>> import pytransit.norm_tools as norm_tools
 >>> import pytransit.tnseq_tools as tnseq_tools
 >>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
 >>> print(data)
 array([[0., 0., 0., ..., 0., 0., 0.],
 [0., 0., 0., ..., 0., 0., 0.]])
 >>> normdata = norm_tools.aBGC_norm(data)
 >>> print(normdata)
 array([[0., 0., 0., ..., 0., 0., 0.],
 [0., 0., 0., ..., 0., 0., 0.]])

 .. seealso:: :class:`normalize_data`
 """

 K,N = data.shape
 norm_data = numpy.zeros(data.shape)
 S = bgsamples
 F = [i/100.0 for i in range(0,31) if i % 2 == 0]
 BGC = []
 param_list = []
 bgc_factors = []
 for j in range(K):

 nzdata = data[j][data[j] > 0]
 nzdata.sort()
 Nall = len(data[j])
 Nnz = len(nzdata)
 GOF_list = []
 for frac in F:
 tQ = numpy.arange(0,Nnz)/float(Nnz)
 rho = 1.0/(scipy.stats.trim_mean(nzdata, frac))
 rho_to_fit = rho

 try:
 A = (numpy.sum(numpy.power(numpy.log(1.0-tQ),2)))/(numpy.sum(nzdata*numpy.log(1.0-tQ)))
 Kp = (2.0 * numpy.exp(A) - 1) /(numpy.exp(A) + rho - 1)
 temp = scipy.stats.geom.rvs(scipy.stats.beta.rvs(Kp*rho, Kp*(1-rho), size=S), size=S)
 bgc_factors.append((rho, Kp))
 except Except as e:
 print("aBGC Error:", str(e))
 print("%rho=s\tKp=%s\tA=%s" % (rho, Kp, A))
 temp = scipy.stats.geom.rvs(0.01, size=S)

 corrected_nzdata = [cleaninfgeom(scipy.stats.geom.ppf(ecdf(temp, x), rho_to_fit), rho_to_fit) for x in nzdata]
 corrected_nzmean = numpy.mean(corrected_nzdata)

 Fp = scipy.stats.geom.ppf(numpy.arange(1,Nnz+1)/float(Nnz), 1.0/corrected_nzmean)
 ii_inf = Fp == float("inf")
 Fp[ii_inf] = max(Fp[~ii_inf]) + 100
 ch2_indiv = numpy.power(corrected_nzdata- Fp, 2)/ Fp
 GOF = max(ch2_indiv)
 GOF_list.append((GOF, frac, rho_to_fit, Kp))

 gof, frac, best_rho, best_Kp = sorted(GOF_list)[0]
 BGsample = scipy.stats.geom.rvs(scipy.stats.beta.rvs(best_Kp*best_rho, best_Kp*(1-best_rho), size=S), size=S)
 #BGC.append(dict([(x, removeinf(scipy.stats.geom.ppf(ecdf(temp, x), best_rho), best_rho)) for x in data[j]]))
 for i in range(N):
 norm_data[j,i] = cleaninfgeom(scipy.stats.geom.ppf(ecdf(BGsample, data[j,i]), best_rho), best_rho)

 if doTotReads:
 (norm_data, factors) = TTRNorm.normalize(norm_data)
 return (norm_data, bgc_factors)

[docs]class ZeroInflatedNBNorm(NormMethod):
 name = "zinfb"

[docs] @staticmethod
 def normalize(data, wigList=[], annotationPath=""):
 """Returns the normalization factors for the data using the zero-inflated
 negative binomial method.

 Arguments:
 data (numpy array): (K,N) numpy array defining read-counts at N sites
 for K datasets.

 Returns:
 numpy array: Array with the normalization factors for the zinfnb method.

 :Example:
 >>> import pytransit.norm_tools as norm_tools
 >>> import pytransit.tnseq_tools as tnseq_tools
 >>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
 >>> print(data)
 array([[0., 0., 0., ..., 0., 0., 0.],
 [0., 0., 0., ..., 0., 0., 0.]])
 >>> factors = norm_tools.zinfnb_factors(data)
 >>> print(factors)
 [[0.0121883]
 [0.00747111]]

 .. seealso:: :class:`normalize_data`
 """
 N = len(data)
 G = len(data[0])

 factors = numpy.zeros((N, 1))
 for j in range(N):
 initParams = [0.3, 10, 0.5]
 M = "L-BFGS-B"
 Fdata = numpy.array(data[j])
 results = scipy.optimize.minimize(Fzinfnb, initParams, args=(Fdata,), method=M, bounds=[(0.0001, 0.9999),(0.0001, None),(0.0001, 0.9999)])
 pi, n, p = results.x
 mu = n*(1-p)/p
 factors[j,0] = 1.0/mu
 data = factors * data
 return (data, factors)

[docs]class QuantileNorm(NormMethod):
 name = "quantile"

[docs] @staticmethod
 def normalize(data, wigList=[], annotationPath=""):
 """Performs Quantile Normalization as described by Bolstad et al. 2003

 Arguments:
 data (numpy array): (K,N) numpy array defining read-counts at N sites
 for K datasets.

 Returns:
 numpy array: Array with the data normalized by the quantile normalization method.

 :Example:
 >>> import pytransit.norm_tools as norm_tools
 >>> import pytransit.tnseq_tools as tnseq_tools
 >>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
 >>> print(data)
 array([[0., 0., 0., ..., 0., 0., 0.],
 [0., 0., 0., ..., 0., 0., 0.]])
 >>> normdata = norm_tools.quantile_norm(data)
 >>> print(normdata)

 .. seealso:: :class:`normalize_data`

 """
 N = len(data)
 G = len(data[0])
 #Sort columns
 s_data = numpy.array([sorted(col) for col in data])
 #Get ranks of original data
 ranks = numpy.zeros(data.shape, dtype=int)
 for j in range(N):
 ranks[j,:] = scipy.stats.rankdata(data[j], method='dense')
 #Get empirical distribution
 ranked_means = numpy.mean(s_data,0)
 #Create dictionary of rank to new empirical values
 rank2count = dict([(r,c) for (r,c) in zip(scipy.stats.rankdata(ranked_means, method='dense'), ranked_means)])
 #Assign values
 norm_data = numpy.zeros(data.shape)
 for i in range(G):
 norm_data[:,i] = [rank2count[ranks[j,i]] for j in range(N)]
 return (norm_data, numpy.ones(1))

[docs]class BetaGeomNorm(NormMethod):
 name = "betageom"

[docs] def ecdf(S, x):
 """Calculates an empirical CDF of the given data."""
 return numpy.sum(S<=x)/float(len(S))

[docs] def cleaninfgeom(x, rho):
 """Returns a 'clean' output from the geometric distribution."""
 if x == float('inf'):
 return scipy.stats.geom.ppf(0.9999999999999999, rho)
 else:
 return x

[docs] @staticmethod
 def normalize(data, wigList=[], annotationPath="", doTTR = True, bgsamples=200000):
 """Returns normalized data according to the BGC method.

 Arguments:
 data (numpy array): (K,N) numpy array defining read-counts at N sites
 for K datasets.
 doTTR (bool): Boolean specifying whether to do TTR norm as well.
 bgsamples (int): Integer specifying how many samples to take.

 Returns:
 numpy array: Array with the data normalized using the betageom method.

 :Example:
 >>> import pytransit.norm_tools as norm_tools
 >>> import pytransit.tnseq_tools as tnseq_tools
 >>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
 >>> print(data)
 array([[0., 0., 0., ..., 0., 0., 0.],
 [0., 0., 0., ..., 0., 0., 0.]])
 >>> normdata = norm_tools.betageom_norm(data)
 >>> print(normdata)
 [[0. 0. 0. ..., 0. 0. 0.]
 [0. 0. 0. ..., 0. 0. 0.]]

 .. seealso:: :class:`normalize_data`
 """

 (K,N) = data.shape
 total_hits = numpy.sum(data,1)
 TAs_hit = numpy.sum(data > 0,1)
 mean_hits = total_hits/TAs_hit
 grand_total = numpy.sum(mean_hits)
 grand_mean = grand_total/float(K)
 norm_data = numpy.zeros(data.shape)
 bgc_factors = []
 for j in range(K):

 tQ = numpy.arange(0,N)/float(N)
 eX = numpy.array([rd for rd in data[j]])
 eX.sort()

 rho = max(1.0/scipy.stats.trim_mean(eX+1, 0.001), 0.0001)
 A = (numpy.sum(numpy.power(numpy.log(1.0-tQ),2)))/(numpy.sum(eX*numpy.log(1.0-tQ)))
 Kp = max((2.0 * numpy.exp(A) - 1) /(numpy.exp(A) + rho - 1), 10)

 bgc_factors.append((rho,Kp))
 try:
 BGsample = scipy.stats.geom.rvs(scipy.stats.beta.rvs(Kp*rho, Kp*(1-rho), size=bgsamples), size=bgsamples)
 except Exception as e:
 print("BGC ERROR with rho=%f, Kp=%f, A=%s" % (rho, Kp, A))
 print(str(e))
 BGsample = scipy.stats.geom.rvs(rho, size=bgsamples)

 for i in range(N):
 norm_data[j,i] = cleaninfgeom(scipy.stats.geom.ppf(ecdf(BGsample, data[j,i]), 1.0/grand_mean), 1.0/grand_mean)

 if doTTR:
 (norm_data, factors) = TTRNorm.normalize(norm_data)
 return (norm_data, bgc_factors)

[docs]class NoNorm(NormMethod):
 name = "nonorm"
[docs] @staticmethod
 def normalize(data, wigList=[], annotationPath=""):
 return (data, numpy.ones(1))

methods = {}
methods["nonorm"] = NoNorm
methods["TTR"] = TTRNorm
methods["nzmean"] = NZMeanNorm
methods["totreads"] = TotReadsNorm
methods["betageom"] = BetaGeomNorm
methods["zinfnb"] = ZeroInflatedNBNorm
methods["quantile"] = QuantileNorm
methods["aBGC"] = AdaptiveBGCNorm
methods["emphist"] = EmpHistNorm

#########################
[docs]def normalize_data(data, method="nonorm", wigList=[], annotationPath=""):
 """Normalizes the numpy array by the given normalization method.

 Arguments:
 data (numpy array): (K,N) numpy array defining read-counts at N sites
 for K datasets.
 method (str): Name of the desired normalization method.
 wigList (list): List of paths for the desired wig-formatted datasets.
 annotationPath (str): Path to the prot_table annotation file.

 Returns:
 numpy array: Array with the normalized data.
 list: List containing the normalization factors. Empty if not used.

 :Example:
 >>> import pytransit.norm_tools as norm_tools
 >>> import pytransit.tnseq_tools as tnseq_tools
 >>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
 >>> print(data)
 array([[0., 0., 0., ..., 0., 0., 0.],
 [0., 0., 0., ..., 0., 0., 0.]])
 (normdata, normfactors) = norm_tools.normalize_data(data, "TTR") # Some methods require annotation and path to wig files.
 >>> print(normfactors)
 array([[1.],
 [0.62862886]])
 >> print(normdata)
 array([[0., 0., 0., ..., 0., 0., 0.],
 [0., 0., 0., ..., 0., 0., 0.]])

 .. note:: Some normalization methods require the wigList and annotationPath arguments.

 """
 factors = []
 if method in methods:
 return methods[method].normalize(data, wigList, annotationPath)
 else:
 warnstr = "Normalization method '%s' is unknown. Read-counts were not normalized." % (method)
 warnings.warn(warnstr)
 return methods["nonorm"].normalize(data, wigList, annotationPath)

[docs]def empirical_theta(X):
 """Calculates the observed density of the data.

 This is used as an estimate insertion density by some normalization methods.
 May be improved by more sophisticated ways later on.

 Arguments:
 data (numpy array): (N) numpy array defining read-counts at N sites.

 Returns:
 float: Density of the given dataset.

 :Example:
 >>> import pytransit.tnseq_tools as tnseq_tools
 >>> import pytransit.norm_tools as norm_tools
 >>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
 >>> print(data)
 array([[0., 0., 0., ..., 0., 0., 0.],
 [0., 0., 0., ..., 0., 0., 0.]])
 >>> theta = norm_tools.empirical_theta(data)
 >>> print(theta)
 0.467133570136

 .. seealso:: :class:`TTR_factors`
 """
 return numpy.mean(X > 0)

[docs]def trimmed_empirical_mu(X, t=0.05):
 """Estimates the trimmed mean of the data.

 This is used as an estimate of mean count by some normalization methods.
 May be improved by more sophisticated ways later on.

 Arguments:
 data (numpy array): (N) numpy array defining read-counts at N sites.
 t (float): Float specifying fraction of start and end to trim.

 Returns:
 float: (Trimmed) Mean of the given dataset.

 :Example:
 >>> import pytransit.tnseq_tools as tnseq_tools
 >>> import pytransit.norm_tools as norm_tools
 >>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
 >>> print(data)
 array([[0., 0., 0., ..., 0., 0., 0.],
 [0., 0., 0., ..., 0., 0., 0.]])
 >>> mu = norm_tools.trimmed_empirical_mu(data)
 >>> print(mu)
 120.73077107

 .. seealso:: :class:`TTR_factors`
 """

 return scipy.stats.trim_mean(X[X > 0], t)

[docs]def Fzinfnb(params, args):
 """Objective function for the zero-inflated NB method."""
 pi, mu, r = params
 Fdata = args
 temp0 = numpy.nan_to_num(numpy.log(pi + scipy.stats.nbinom.pmf(Fdata[Fdata==0], mu, r)))
 tempnz = numpy.nan_to_num(numpy.log(1.0-pi)+scipy.stats.nbinom.logpmf(Fdata[Fdata>0], mu, r))
 negLL = -(numpy.sum(temp0) + numpy.sum(tempnz))
 return negLL

[docs]def zinfnb_factors(data):
 """Returns the normalization factors for the data using the zero-inflated
 negative binomial method.

 Arguments:
 data (numpy array): (K,N) numpy array defining read-counts at N sites
 for K datasets.

 Returns:
 numpy array: Array with the normalization factors for the zinfnb method.

 :Example:
 >>> import pytransit.norm_tools as norm_tools
 >>> import pytransit.tnseq_tools as tnseq_tools
 >>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
 >>> print(data)
 array([[0., 0., 0., ..., 0., 0., 0.],
 [0., 0., 0., ..., 0., 0., 0.]])
 >>> factors = norm_tools.zinfnb_factors(data)
 >>> print(factors)
 [[0.0121883]
 [0.00747111]]

 .. seealso:: :class:`normalize_data`
 """
 N = len(data)
 G = len(data[0])

 factors = numpy.zeros((N, 1))
 for j in range(N):
 initParams = [0.3, 10, 0.5]
 M = "L-BFGS-B"
 Fdata = numpy.array(data[j])
 results = scipy.optimize.minimize(Fzinfnb, initParams, args=(Fdata,), method=M, bounds=[(0.0001, 0.9999),(0.0001, None),(0.0001, 0.9999)])
 pi, n, p = results.x
 mu = n*(1-p)/p
 factors[j,0] = 1.0/mu
 return numpy.array(factors)

#

[docs]def ecdf(S, x):
 """Calculates an empirical CDF of the given data."""
 return numpy.sum(S<=x)/float(len(S))

[docs]def cleaninfgeom(x, rho):
 """Returns a 'clean' output from the geometric distribution."""
 if x == float('inf'):
 return scipy.stats.geom.ppf(0.9999999999999999, rho)
 else:
 return x

#

[docs]def norm_to_target(data, target):
 """Returns factors to normalize the data to the given target value.

 Arguments:
 data (numpy array): (K,N) numpy array defining read-counts at N sites
 for K datasets.
 target (float): Floating point specifying the target for the mean of the data/

 Returns:
 numpy array: Array with the factors necessary to normalize mean to target.

 :Example:
 >>> import pytransit.norm_tools as norm_tools
 >>> import pytransit.tnseq_tools as tnseq_tools
 >>> (data, position) = tnseq_tools.get_data(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"])
 >>> print(data)
 array([[0., 0., 0., ..., 0., 0., 0.],
 [0., 0., 0., ..., 0., 0., 0.]])
 >>> factors = norm_tools.norm_to_target(data, 100)
 >>> print(factors)
 [[1.8548104]
 [1.16088726]]

 .. seealso:: :class:`normalize_data`
 """
 (K,N) = data.shape
 factors = numpy.zeros((K,1))
 factors[:,0] = float(target)/numpy.mean(data,1)
 return factors

 Source code for pytransit.stat_tools

import math
import numpy
import scipy.stats

[docs]def sample_trunc_norm_post(data, S, mu0, s20, k0, nu0):
 n = len(data)
 s2 = numpy.var(data,ddof=1)
 ybar = numpy.mean(data)
 kn = k0+n
 nun = nu0+n
 mun = (k0*mu0 + n*ybar)/float(kn)
 s2n = (1.0/nun) * (nu0*s20 + (n-1)*s2 + (k0*n/float(kn))*numpy.power(ybar-mu0,2))

 s2_post = 1.0/scipy.stats.gamma.rvs(nun/2.0, scale=2.0/(s2n*nun), size=S)

 # Truncated Normal since counts can't be negative
 min_mu = 0
 max_mu = 1000000
 trunc_a = (min_mu-mun)/numpy.sqrt(s2_post/float(kn))
 trunc_b = (max_mu-mun)/numpy.sqrt(s2_post/float(kn))

 mu_post = scipy.stats.truncnorm.rvs(a=trunc_a, b=trunc_b, loc=mun, scale=numpy.sqrt(s2_post/float(kn)), size=S)

 return (mu_post, s2_post)

#

[docs]def FWER_Bayes(X):
 ii = numpy.argsort(numpy.argsort(X))
 P_NULL = numpy.sort(X)
 W = 1 - P_NULL
 N = len(P_NULL)
 P_ALT = numpy.zeros(N)
 for i in range(N):
 P_ALT[i] = 1.0 - numpy.prod(W[:i+1])
 return P_ALT[ii]

#

[docs]def bFDR(X):
 N = len(X)
 ii = numpy.argsort(numpy.argsort(X))
 P_NULL = numpy.sort(X)
 P_ALT = numpy.zeros(N)
 for i in range(N):
 P_ALT[i] = numpy.mean(P_NULL[:i+1])
 return P_ALT[ii]

#

[docs]def HDI_from_MCMC(posterior_samples, credible_mass=0.95):
 # Credit to 'user72564'
 # https://stackoverflow.com/questions/22284502/highest-posterior-density-region-and-central-credible-region
 # Computes highest density interval from a sample of representative values,
 # estimated as the shortest credible interval
 # Takes Arguments posterior_samples (samples from posterior) and credible mass (normally .95)
 sorted_points = sorted(posterior_samples)
 ciIdxInc = numpy.ceil(credible_mass * len(sorted_points)).astype('int')
 nCIs = len(sorted_points) - ciIdxInc
 ciWidth = [0]*nCIs
 for i in range(0, nCIs):
 ciWidth[i] = sorted_points[i + ciIdxInc] - sorted_points[i]
 HDImin = sorted_points[ciWidth.index(min(ciWidth))]
 HDImax = sorted_points[ciWidth.index(min(ciWidth))+ciIdxInc]
 return(HDImin, HDImax)

#

[docs]def transformToRange(X, new_min, new_max, old_min=None, old_max=None):

 if old_min == None:
 old_min = min(X)
 if old_max == None:
 old_max = max(X)

 old_range = old_max - old_min

 new_range = new_max - new_min
 return [float(x - old_min) / old_range * new_range + new_min for x in X]

#

[docs]def fact(n):
 if n == 0: return (1)
 else: return reduce(lambda x,y: x*y, range(1,n+1))

#

[docs]def comb1(n,k):
 prod = 1
 for i in range(1,k+1):
 prod = prod * (n - (k-i))/float(i)
 return(prod)

#

[docs]def comb(n, k):
 if k < 0 or k > n:
 return 0
 if k > n - k: # take advantage of symmetry
 k = n - k
 c = 1
 for i in range(k):
 c = c * (n - (k - (i+1)))
 c = c // (i+1)
 return c

#

[docs]def norm(x, mu,sigma):
 """Normal distribution"""
 sigma = float(sigma)
 return(1/(sigma*(math.sqrt(2*math.pi))) * math.exp(-0.5 * math.pow((x-mu)/sigma,2)))

#

[docs]def binom(k,n,p):
 """Binomial distribution. Uses Normal approximation for large 'n' """
 if n >= 100:
 return(norm(k, n*p, math.sqrt(n*p*(1-p))))
 else:
 return(comb(n,k) * math.pow(p, k) * math.pow(1-p, n-k))

#

[docs]def binom_cdf(k,n,p):
 """CDF of the binomial distribution"""
 return(sum([binom(i,n,p) for i in range(0,k+1)]))

#

[docs]def binom_test(k,n,p, type="two-sided"):
 """Does a binomial test given success, trials and probability."""
 if type == "less": return(binom_cdf(k,n,p))
 elif type == "greater": return(1-binom_cdf(k-1,n,p))
 else:
 if p == 0: return(1) #return(k == 0)
 elif p == 1: return(1) #return(k == n)
 else:
 relErr = 1 + 1e-7
 d = binom(k,n,p)
 m = n * p
 if k == m: return(1)
 elif (k < m):
 ri = range(int(math.ceil(m)), n+1)
 y = sum([1 for j in ri if binom(j,n,p) <= d*relErr])
 return(binom_cdf(k,n,p) + (1-binom_cdf(int(n-y),n,p)))
 else:
 ri = range(0, int(math.floor(m)))
 y = sum([1 for j in ri if binom(j,n,p) <= d*relErr])
 return(binom_cdf(y-1,n,p) + (1-binom_cdf(k-1,n,p)))

##############################
Bernoulli Diff Distribution
[docs]def dberndiff(d, peq, p01, p10):
 N = numpy.size(d)
 if N == 0:
 return 0.0
 if N == 1:
 if type(d) == type(()):
 d = d[0]
 if d == 0:
 return peq
 else:
 if d == -1:
 return p01
 if d == 1:
 return p10
 return 0.0
#
 else:
 d = numpy.array(d)
 result = numpy.zeros(N)
 result[d == -1] = p01
 result[d == 0] = peq
 result[d == 1] = p10
 return result

#

[docs]def qberndiff(d, peq, p01, p10):
 return numpy.sum([dberndiff(x, peq, p01, p10) for x in range(-1, d + 1)])

#############################
Binomial Diff Distribution

[docs]def dbinomdiff(d, n, P):
 S = numpy.array(my_perm(d, n))
 return numpy.sum(multinomial(S, P))

#

[docs]def qbinomdiff(d, n, peq, p01, p10):
 return numpy.sum([dbinomdiff(x, n, peq, p01, p10) for x in range(-n, d + 1)])

#

[docs]def my_perm(d, n):
 S = []
 if d == 0:
 for i in range(n + 1):
 r = n - i
 if isEven(r):
 S.append((int(r / 2.0), i, int(r / 2.0)))
#
 if d > 0:
 for i in range(d, n + 1):
 r = n - i
 if i == d:
 S.append((0, n - d, d))
 elif i > d:
 r = n - (i + (i - d))
 if 0 <= r <= n:
 S.append((i - d, r, i))
#
 if d < 0:
 for i in range(abs(d), n + 1):
 r = n - i
 if i == abs(d):
 S.append((-d, n + d, 0))
 elif i > d:
 r = n - (i + (i + d))
 if 0 <= r <= n:
 S.append((i, r, i + d))
#
 return S

#

[docs]def multinomial(K, P):
 N = numpy.sum(K, 1)
 if K.shape == P.shape:
 return tricoeff(N, K) * numpy.prod([numpy.power(P[i], K[i]) for i in range(len(K))], 1)
 else:
 return tricoeff(N, K) * numpy.prod([numpy.power(P, K[i]) for i in range(len(K))], 1)

#

[docs]def log_fac(n):
 return numpy.sum(numpy.log(numpy.arange(2, n + 1)))

#

[docs]def tricoeff(N, S):
 try:
 LOG_FAC
 except NameError:
 LOG_FAC = []
 for i in range(numpy.max(N) + 1):
 LOG_FAC.append(log_fac(i))
#
 LOG_FAC = numpy.array(LOG_FAC)
#
 return numpy.exp(LOG_FAC[N] - (LOG_FAC[S[:, 0]] + LOG_FAC[S[:, 1]] + LOG_FAC[S[:, 2]]))

#

[docs]def isEven(x):
 return x % 2 == 0

#

[docs]def regress(X,Y):
 """Performs linear regression given two vectors, X, Y."""
 N = len(X)
 xbar = numpy.average(X)
 ybar = numpy.average(Y)
 xybar = numpy.average([X[i]*Y[i] for i in range(N)])
 x2bar = numpy.average([X[i]*X[i] for i in range(N)])
 B = (xybar - xbar*ybar)/(x2bar - xbar*xbar)
 A0 = ybar - B*xbar

 yfit = [A0 + B *X[i] for i in range(N)]
 yres = [Y[i] - (A0 + B *X[i]) for i in range(N)]
 var = sum([math.pow(yres[i],2) for i in range(N)])/(N-2)
 std = math.sqrt(var)

 return(B, A0, std)

#

[docs]def boxcoxtransform(x, lambdax):
 """
 Performs a box-cox transformation to data vector X.
 WARNING: elements of X should be all positive!
 Fixed: '>' has changed to '<'
 """
 if x <= 0:
 raise ValueError("Nonpositive value(s) in X vector")
 if abs(lambdax) < 1.0e-5:
 return(math.log(x))
 else:
 return((x**lambdax - 1.0)/lambdax)

 #return math.log(x) if abs(lambdax) < 1.0e-5 else (x**lambdax - 1.0)/lambdax

#

[docs]def loglik(X, lambdax):
 """
 Computes the log-likelihood function for a transformed vector Xtransform.
 """
 n = len(X)
 Xtrans = [boxcoxtransform(x, lambdax) for x in X]
 meanX = sum(Xtrans) / float(n)
 S2 = (lambdax - 1.0) * sum([math.log(x) for x in X])
 S = sum([(x-meanX) **2 for x in Xtrans])
 S1= (-n/2.0)*math.log(S/n)
 return S2+S1

#

[docs]def boxcoxTable(X, minlambda, maxlambda, dellambda):
 """
 Returns a table of (loglik function, lambda) pairs
 for the data.
 """
 # Create a table (lambda, loglik)
 out = []
 vallambda = minlambda
 while vallambda <= maxlambda+1.0e-5:
 llik = loglik(X, vallambda)
 out.append((llik, vallambda))
 vallambda += dellambda
 return out

#

[docs]def phi_coefficient(X,Y):
 """Calculates the phi-coefficient for two bool arrays"""
 N = len(X)
 assert len(X) == len(Y), "Length of arrays must be equal"
 x1y1 = sum([int(X[j]) == int(Y[j]) == 1 for j in range(N)])
 x1y0 = sum([int(X[j]) == 1 and int(Y[j]) == 0 for j in range(N)])
 x0y1 = sum([int(X[j]) == 0 and int(Y[j]) == 1 for j in range(N)])
 x0y0 = sum([int(X[j]) == int(Y[j]) == 0 for j in range(N)])
 x1 = x1y1 + x1y0
 x0 = x0y1 + x0y0
 y1 = x1y1 + x0y1
 y0 = x1y0 + x0y0
 phi_coeff = (x1y1*x0y0 - x1y0*x0y1)/math.sqrt(x1*x0*y1*y0)
 return phi_coeff

#

[docs]def BH_fdr_correction(X):
 """Adjusts p-values using the Benjamini Hochberg procedure"""
 n = len(X)
 qvalues = numpy.zeros(n)
 pvalues = numpy.array(X)
 pvalues.sort()
 pvalues = pvalues[::-1]

 for i in range(n):
 rank = n - i
 qvalues[i] = n/float(rank) * pvalues[i]

 for i in range(0, n-1):
 if qvalues[i] < qvalues[i+1]:
 qvalues[i+1] = qvalues[i]

 p2qval = dict([(p,q) for (p,q) in zip(pvalues,qvalues)])
 return numpy.array([p2qval[p] for p in X])

#

[docs]def bayesian_ess_thresholds(Z_raw, ALPHA=0.05):
 """Returns Essentiality Thresholds using a BH-like procedure"""
 Z = numpy.sort(Z_raw)[::-1]
 W = 1 - Z
 N = len(Z)

 ess_threshold = 1.00
 INDEX = list(range(3, N+1))
 count = 0
 for i in INDEX:
 count +=1
 wi = 1 - Z[i-1]
 ai_n = (ALPHA*i)/N
 mean_wi = numpy.average(W[0:i-2])
 delta_w = wi - mean_wi
 #if count < 30: print(i, wi, ai_n, delta_w)
 if delta_w > ai_n:
 ess_threshold = Z[i-1]
 #print("i", i)
 break

 noness_threshold = 0.00
 count = 0
 INDEX = list(range(0, N+1))
 INDEX.sort(reverse=True)
 for i in INDEX:
 wi = Z[N-i+1]
 ai_n = (ALPHA*i)/N
 mean_wi = numpy.average(Z[N-i+1:])
 delta_w = Z[N-i+1] - mean_wi
 count +=1
 #print(count)
 #if count < 20:
 # print(i, wi, ai_n, mean_wi, delta_w, N-i+1, N-1, W[N-i-1], W[i-1])

 if ai_n > delta_w:
 # print(i, wi, ai_n, mean_wi, delta_w, N-i+1, N-1, W[N-i-1], W[i-1])
 break
 noness_threshold = Z[N-i]

 return(ess_threshold, noness_threshold)

#

[docs]def tricube(X):
 #TODO: Write docstring
 result = numpy.zeros(len(X))
 ii = numpy.logical_and(X >= -1, X <= 1)
 result[ii] = numpy.power(1 - numpy.power(numpy.abs(X[ii]), 3), 3)
 return result

#

[docs]def loess(X, Y, h=10000):
 #TODO: Write docstring
 smoothed = numpy.zeros(len(Y))
 for i,x in enumerate(X):
 W = tricube((X-x)/float(h))
 sW = numpy.sum(W)
 wsX = numpy.sum(W*X)
 wsY = numpy.sum(W*Y)
 wsXY = numpy.sum(W*X*Y)
 sXX = numpy.sum(X*X)
 B = (sW * wsXY - wsX * wsY)/(sW * sXX - numpy.power(wsX,2))
 A = (wsY - B*wsX) / sW
 smoothed[i] = B*x + A
 return smoothed

#

[docs]def loess_correction(X, Y, h=10000, window=100):
 #TODO: Write docstring
 Y = numpy.array(Y)
 size = int(len(X)/window) + 1
 x_w = numpy.zeros(size)
 y_w = numpy.zeros(size)
 for i in range(size):
 x_w[i] = window*i
 y_w[i] = sum(Y[window*i:window*(i+1)])

 ysmooth = loess(x_w, y_w, h)
 mline = numpy.mean(y_w)
 y_w * (ysmooth/mline)

 normalized_Y = numpy.zeros(len(Y))
 for i in range(size):
 normalized_Y[window*i:window*(i+1)] = Y[window*i:window*(i+1)] * (ysmooth[i]/mline)

 return normalized_Y

#

[docs]def F_mean_diff_flat(*args, **kwargs):
 A = args[0]
 B = args[1]
 return numpy.mean(B) - numpy.mean(A)

[docs]def F_sum_diff_flat(*args, **kwargs):
 A = args[0]
 B = args[1]
 return numpy.sum(B) - numpy.sum(A)

#

[docs]def F_mean_diff_dict(*args, **kwargs):
 D = args[0]
 data1_total = 0; data2_total = 0;
 data1_size = 0; data2_size = 0;
 for L in D:
 data1_total+= numpy.sum(D[L][0])
 data1_size+= len(D[L][0])
 data2_total+= numpy.sum(D[L][1])
 data2_size+= len(D[L][1])
 return (data2_total/float(data2_size)) - (data1_total/float(data1_size))

[docs]def F_sum_diff_dict(*args, **kwargs):
 D = args[0]
 data1_total = 0; data2_total = 0;
 for L in D:
 data1_total+= numpy.sum(D[L][0])
 data2_total+= numpy.sum(D[L][1])
 return data2_total - data1_total

#

[docs]def F_shuffle_flat(*args, **kwargs):
 X = args[0]
 return numpy.random.permutation(X)

#

[docs]def F_shuffle_dict_libraries(*args, **kwargs):
 D = args[0]
 E = {}
 for L in D:
 #print("L", L)
 n1 = len(D[L][0])
 combined = numpy.append(D[L][0], D[L][1])
 #print("combined", combined)
 perm = numpy.random.permutation(combined)
 #print("perm", perm)
 #print("perm[:n1]", perm[:n1])
 E[L] = numpy.array([perm[:n1], perm[n1:]])
 #print("D[L]", D[L])
 return E

#

[docs]def resampling(data1, data2, S=10000, testFunc=F_mean_diff_flat,
 permFunc=F_shuffle_flat, adaptive=False, lib_str1="", lib_str2="",PC=1):
 """Does a permutation test on two sets of data.

 Performs the resampling / permutation test given two sets of data using a
 function defining the test statistic and a function defining how to permute
 the data.

 Args:
 ar: List or numpy array with the first set of observations.
 data2: List or numpy array with the second set of observations.
 S: Number of permutation tests (or samples) to obtain.
 testFunc: Function defining the desired test statistic. Should accept
 two lists as arguments. Default is difference in means between
 the observations.
 permFunc: Function defining the way to permute the data. Should accept
 one argument, the combined set of data. Default is random
 shuffle.
 adaptive: Cuts-off resampling early depending on significance.

 Returns:
 Tuple with described values
 - test_obs -- Test statistic of observation.
 - mean1 -- Arithmetic mean of first set of data.
 - mean2 -- Arithmetic mean of second set of data.
 - log2FC -- Normalized log2FC the means.
 - pval_ltail -- Lower tail p-value.
 - pval_utail -- Upper tail p-value.
 - pval_2tail -- Two-tailed p-value.
 - test_sample -- List of samples of the test statistic.

 :Example:
 >>> import pytransit.stat_tools as stat_tools
 >>> import numpy
 >>> X = numpy.random.random(100)
 >>> Y = numpy.random.random(100)
 >>> (test_obs, mean1, mean2, log2fc, pval_ltail, pval_utail, pval_2tail, test_sample) = stat_tools.resampling(X,Y)
 >>> pval_2tail
 0.2167
 >>> test_sample[:3]
 [0.076213992904990535, -0.0052513291091412784, -0.0038425140184765172]

 """

 # Do basic sanity checks:
 # - Check library strings match in some way
 lib_diff = set(lib_str1) ^ set(lib_str2)
 if lib_diff:
 raise ValueError("At least one library string has a letter not used by the other:\ %s" % ", ".join(lib_diff))

 # - Check input has some data
 assert len(data1) > 0, "Data1 cannot be empty"
 assert len(data2) > 0, "Data2 cannot be empty"

 count_ltail = 0
 count_utail = 0
 count_2tail = 0

 test_list = []

 # Calculate basic statistics for the input data:
 n1 = len(data1)
 n2 = len(data2)

 mean1 = 0
 if n1 > 0:
 mean1 = numpy.mean(data1)
 mean2 = 0
 if n2 > 0:
 mean2 = numpy.mean(data2)

 if PC>0: log2FC = math.log((mean2+PC)/(mean1+PC),2) # as of 3/5/20
 else:
 # Only adjust log2FC if one of the means is zero
 if mean1 > 0 and mean2 > 0: log2FC = math.log((mean2)/(mean1),2)
 else: log2FC = math.log((mean2+1.0)/(mean1+1.0),2)

 # Get stats and info based on whether working with libraries or not:
 nTAs = 0
 if lib_str1:
 # Get number of TA sites implied
 nTAs = len(data1.flatten())//len(lib_str1)
 assert len(data2.flatten())//len(lib_str2) == nTAs, "Datasets do not have matching sites;\
 check input data and library strings."
 # Get data
 perm = get_lib_data_dict(data1, lib_str1, data2, lib_str2, nTAs)
 test_obs = testFunc(perm)
 else:
 try:
 test_obs = testFunc(data1, data2)
 except Exception as e:
 print("")
 print("!"*100)
 print("Error: Could not apply test function to input data!")
 print("data1", data1)
 print("data2", data2)
 print("")
 print("\t%s" % e)
 print("!"*100)
 print("")
 return None

 perm = numpy.zeros(n1+n2)
 perm[:n1] = data1
 perm[n1:] = data2

 count_ltail = 0
 count_utail = 0
 count_2tail = 0
 test_list = []
 s_performed = 0
 for s in range(S):
 if len(perm) >0:
 perm = permFunc(perm)
 if not lib_str1:
 test_sample = testFunc(perm[:n1], perm[n1:])
 else:
 test_sample = testFunc(perm)
 else:
 test_sample = 0

 test_list.append(test_sample)
 if test_sample <= test_obs: count_ltail+=1
 if test_sample >= test_obs: count_utail+=1
 if abs(test_sample) >= abs(test_obs): count_2tail+=1

 s_performed+=1
 if adaptive:
 if s_performed == round(S*0.01) or s_performed == round(S*0.1) or s_performed == round(S*1):
 if count_2tail >= round(S*0.01*0.10):
 break

 pval_ltail = count_ltail/float(s_performed)
 pval_utail = count_utail/float(s_performed)
 pval_2tail = count_2tail/float(s_performed)

 return (test_obs, mean1, mean2, log2FC, pval_ltail, pval_utail, pval_2tail, test_list)

#

[docs]def cumulative_average(new_x, n, prev_avg):
 return ((new_x + (n*prev_avg))/(n+1.0), n+1)

#

[docs]def text_histogram(X, nBins = 20, resolution=200, obs = None):
 MIN = numpy.min(X)
 MAX = numpy.max(X)
 bin_list = numpy.linspace(MIN, MAX, nBins)
 hit_flag = "->"; empty_flag = " "
 for b_l, b_u in zip(bin_list[:-2], bin_list[1:]):
 Z = numpy.logical_and(b_l <= X, X < b_u)
 density = numpy.mean(Z)
 if obs != None and (b_l <= obs < b_u):
 flag = hit_flag
 else:
 flag = empty_flag
 print("%-12f\t%s|%s" % (b_l, flag, "#"*int(resolution*density)))
 Z = numpy.logical_and(bin_list[-1] <= X, X < float("inf"))
 density = numpy.mean(Z)
 if obs != None and (bin_list[-1] <= obs < float("inf")):
 flag = hit_flag
 else:
 flag = empty_flag
 print("%-12f\t%s|%s" % (bin_list[-1], flag, "#"*int(resolution*density)))

[docs]def parse_lib_index(nData, libstr, nTAs):
 full_index = numpy.arange(nData)
 lib_to_index = {}
 for k,L in enumerate(libstr):
 if L not in lib_to_index: lib_to_index[L] = []
 lib_to_index[L] += list(full_index[k*nTAs:((k+1)*nTAs)])
 for L,index in lib_to_index.items():
 lib_to_index[L] = numpy.array(index)
 return lib_to_index

#

[docs]def combine_lib_dicts(L1, L2):
 KEYS = L1.keys()
 DATA = {}
 for K in KEYS:
 DATA[K] = numpy.array([L1[K], L2[K]])
 return DATA

#

[docs]def get_lib_data_dict(data1, ctrl_lib_str, data2, exp_lib_str, nTAs):
 lib1_index_dict = parse_lib_index(len(data1), ctrl_lib_str, nTAs)
 lib2_index_dict = parse_lib_index(len(data2), exp_lib_str, nTAs)

 lib1_data_dict = dict([(L, data1[lib1_index_dict[L]]) for L in sorted(lib1_index_dict)])
 lib2_data_dict = dict([(L, data2[lib2_index_dict[L]]) for L in sorted(lib2_index_dict)])

 data_dict = combine_lib_dicts(lib1_data_dict, lib2_data_dict)
 return data_dict

#TEST-CASES

if __name__ == "__main__":

 """
 n = 20
 p = 0.5
 k = 14
 print("")
 print("###")
 print("############ BINOM TEST #################")
 print("###")
 print("Coin Tosses: %d" % n)
 print("Success Prob: %3.2f" % p)
 print("Observed: %d" % k)

 print("")
 print("Left-Tail Test:")
 print("%d tosses, p-value = %f" % (k, binom_test(k,n,p,"less")))

 print("")
 print("Right-Tail Test:")
 print("%d tosses, p-value = %f" % (k, binom_test(k,n,p,"greater")))

 print("")
 print("Two-Sided Test:")
 print("%d tosses, p-value = %f" % (k, binom_test(k,n,p,"two-sided")))

 print("")
 print("")
 print("###")
 print("############ RESAMPLING #################")
 print("###")

 data1 = scipy.stats.norm.rvs(100,10, size=1000)
 data2 = scipy.stats.norm.rvs(105,10, size=1000)

 (test_obs, mean1, mean2, log2FC, pval_ltail, pval_utail, pval_2tail, test_list) = resampling(data1, data2, S=10000)
 print("Data1:")
 text_histogram(data1, nBins = 20)
 print("")
 print("Data2:")
 text_histogram(data2, nBins = 20)
 print("")
 print("Results:", (test_obs, mean1, mean2, log2FC, pval_ltail, pval_utail, pval_2tail))
 print("")
 print("Resampling Histogram:")
 text_histogram(test_list, nBins = 20, obs=test_obs)

 """

 ## TEST
 import pytransit.transit_tools as transit_tools
 import pytransit.tnseq_tools as tnseq_tools
 import pytransit.norm_tools as norm_tools
 import sys

 ctrldata = ["/pacific/home/mdejesus/transit/tests/GI/H37Rv_day0_rep1.wig",
 "/pacific/home/mdejesus/transit/tests/GI/Rv2680_day0_rep1.wig",
 "/pacific/home/mdejesus/transit/tests/GI/H37Rv_day0_rep2.wig",
 "/pacific/home/mdejesus/transit/tests/GI/Rv2680_day0_rep2.wig"]

 expdata = ["/pacific/home/mdejesus/transit/tests/GI/H37Rv_day32_rep1.wig",
 "/pacific/home/mdejesus/transit/tests/GI/H37Rv_day32_rep2.wig",
 "/pacific/home/mdejesus/transit/tests/GI/H37Rv_day32_rep3.wig",
 "/pacific/home/mdejesus/transit/tests/GI/Rv2680_day32_rep1.wig",
 "/pacific/home/mdejesus/transit/tests/GI/Rv2680_day32_rep2.wig",
 "/pacific/home/mdejesus/transit/tests/GI/Rv2680_day32_rep3.wig"]

 annotation = "/pacific/home/mdejesus/transit/tests/GI/H37Rv.prot_table"

 i = 202
 if len(sys.argv) > 1:
 i = int(sys.argv[1])
 DO_LIB = True
 if len(sys.argv) > 2:
 DO_LIB = bool(int(sys.argv[2]))

 if DO_LIB:
 ctrl_lib_str = "ABAB"
 exp_lib_str = "AAABBB"
 else:
 ctrl_lib_str = ""
 exp_lib_str = ""

 Kctrl = len(ctrldata)
 Kexp = len(expdata)

 (data, position) = transit_tools.get_validated_data(ctrldata+expdata)
 (K,N) = data.shape

 (data, factors) = norm_tools.normalize_data(data, "TTR", ctrldata+expdata, annotation)

 G = tnseq_tools.Genes(ctrldata + expdata, annotation, data=data, position=position)

 gene = G[i]

 print("\n\n")
 print("#"*100)
 print("# (%s) NEW TEST: %s" % (DO_LIB, gene))
 print("#"*100)
 print("")

 ii = numpy.ones(gene.n) == 1

 data1 = gene.reads[:Kctrl,ii].flatten()
 data2 = gene.reads[Kctrl:,ii].flatten()

 data_dict = get_lib_data_dict(data1, ctrl_lib_str, data2, exp_lib_str, gene.n)

 if DO_LIB:
 (test_obs, mean1, mean2, log2FC, pval_ltail, pval_utail, pval_2tail, testlist) = resampling(data1, data2, S=10000, testFunc=F_mean_diff_dict, permFunc=F_shuffle_dict_libraries, adaptive=False, lib_str1=ctrl_lib_str, lib_str2=exp_lib_str)
 else:
 (test_obs, mean1, mean2, log2FC, pval_ltail, pval_utail, pval_2tail, testlist) = resampling(data1, data2, S=10000, testFunc=F_mean_diff_flat, permFunc=F_shuffle_flat, adaptive=False, lib_str1=ctrl_lib_str, lib_str2=exp_lib_str)

 print("Resampling Histogram:")
 text_histogram(testlist, nBins = 20, obs=test_obs)

 Source code for pytransit.tnseq_tools

import sys
import os
import math
import warnings
import numpy
import scipy.stats
from functools import total_ordering

try:
 from pytransit import norm_tools
 noNorm = False
except ImportError:
 noNorm = True
 warnings.warn("Problem importing the norm_tools.py module. Read-counts will not be normalized. Some functions may not work.")

[docs]def rv_siteindexes_map(genes, TASiteindexMap, nterm=0.0, cterm=0.0):
 """
 ([Gene], {TAsite: Siteindex}) -> {Rv: Siteindex}
 """
 RvSiteindexesMap = {}
 for g, gene in enumerate(genes):
 siteindexes = []
 start = gene["start"] if gene["strand"] == "+" else gene["start"] + 3
 end = gene["end"] - 3 if gene["strand"] == "+" else gene["end"]
 for i in range(start, end + 1):
 co = i
 if (co - start)/float(end-start) < (nterm/100.0):
 continue
 if (co - start)/float(end-start) > ((100 - cterm)/100.0):
 continue
 if co in TASiteindexMap: siteindexes.append(TASiteindexMap[co])
 RvSiteindexesMap[gene["rv"]] = siteindexes
 return RvSiteindexesMap

format:
header lines (prefixed by '#'), followed by lines with counts
counts lines contain the following columns: TA coord, counts, other info like gene/annotation
for each column of counts, there must be a header line prefixed by "#File: " and then an id or filename

[docs]def read_combined_wig(fname):
 """
 Read the combined wig-file generated by Transit
 :: Filename -> Tuple([Site], [WigData], [Filename])
 Site :: Integer
 WigData :: [Number]
 Filename :: String
 """
 sites,countsByWig,files = [],[],[]
 with open(fname) as f:
 lines = f.readlines()
 for line in lines:
 if line.startswith("#File: "):
 files.append(line.rstrip()[7:]) # allows for spaces in filenames
 countsByWig = [[] for _ in files]
 for line in lines:
 if line[0]=='#': continue
 cols = line.split("\t")[0:1+len(files)]
 cols = cols[:1+len(files)] # additional columns at end could contain gene info
 # Read in position as int, and readcounts as float
 cols = list(map(lambda t_iv: int(t_iv[1]) if t_iv[0] == 0 else float(t_iv[1]), enumerate(cols)))
 position, wigCounts = cols[0], cols[1:]
 sites.append(position)
 for i, c in enumerate(wigCounts):
 countsByWig[i].append(c)

 return (numpy.array(sites), numpy.array(countsByWig), files)

[docs]def read_samples_metadata(metadata_file, covarsToRead = [], interactionsToRead = [], condition_name="Condition"):
 """
 Filename -> ConditionMap
 ConditionMap :: {Filename: Condition}, [{Filename: Covar}], [{Filename: Interaction}]
 Condition :: String
 Covar :: String
 Interaction :: String
 """
 wigFiles = []
 conditionsByFile = {}
 covariatesByFileList = [{} for i in range(len(covarsToRead))]
 interactionsByFileList = [{} for i in range(len(interactionsToRead))]
 headersToRead = [condition_name.lower(), "filename"]
 orderingMetadata = { 'condition': [], 'interaction': [] }
 with open(metadata_file) as mfile:
 lines = mfile.readlines()
 headIndexes = [i
 for h in headersToRead
 for i, c in enumerate(lines[0].split())
 if c.lower() == h.lower()]
 covarIndexes = [i
 for h in covarsToRead
 for i, c in enumerate(lines[0].split())
 if c.lower() == h.lower()]
 interactionIndexes = [i
 for h in interactionsToRead
 for i, c in enumerate(lines[0].split())
 if c.lower() == h.lower()]

 for line in lines[1:]:
 if line[0]=='#': continue
 vals = line.split()
 [condition, wfile] = vals[headIndexes[0]], vals[headIndexes[1]]
 conditionsByFile[wfile] = condition
 orderingMetadata['condition'].append(condition)
 for i, c in enumerate(covarsToRead):
 covariatesByFileList[i][wfile] = vals[covarIndexes[i]]
 for i, c in enumerate(interactionsToRead):
 interactionsByFileList[i][wfile] = vals[interactionIndexes[i]]

 # This makes sense only if there is only 1 interaction variable
 # For multiple interaction vars, may have to rethink ordering.
 orderingMetadata['interaction'].append(vals[interactionIndexes[i]])

 return conditionsByFile, covariatesByFileList, interactionsByFileList, orderingMetadata

[docs]def read_genes(fname,descriptions=False):
 """
 (Filename, Options) -> [Gene]
 Gene :: {start, end, rv, gene, strand}
 """
 genes = []
 for line in open(fname):
 w = line.rstrip().split('\t')
 data = {
 "start": int(w[1]),
 "end": int(w[2]),
 "rv": w[8],
 "gene": w[7],
 "strand": w[3]
 }
 if descriptions==True: data.append(w[0])
 genes.append(data)
 return genes

[docs]@total_ordering
class Gene:
 """Class defining a gene with useful attributes for TnSeq analysis.

 This class helps define a "gene" with attributes that facilitate TnSeq
 analysis. Here "gene" can be defined to be any genomic region. The Genes
 class (with an s) can be used to define list of Gene objects with more
 useful operations on the "genome" level.

 Attributes:
 orf: A string defining the ID of the gene.
 name: A string with the human readable name of the gene.
 desc: A string with the description of the gene.
 reads: List of lists of read-counts in possible site replicate dataset.
 position: List of coordinates of the possible sites.
 start: An integer defining the start coordinate for the gene.
 end: An integer defining the end coordinate for the gene.
 strand: A string defining the strand of the gene.

 :Example:

 >>> import pytransit.tnseq_tools as tnseq_tools
 >>> G = tnseq_tools.Gene("Rv0001", "dnaA", "DNA Replication A", [[0,0,0,0,1,3,0,1]], [1,21,32,37,45,58,66,130], strand="+")
 >>> print(G)
 Rv0001 (dnaA) k=3 n=8 r=4 theta=0.37500
 >>> print(G.phi())
 0.625
 >>> print(G.tosses)
 array([0., 0., 0., 0., 1., 1., 0., 1.])

 .. seealso:: :class:`Genes`
 """

 def __init__(self, orf, name, desc, reads, position, start=0, end=0, strand=""):
 """Initializes the Gene object.

 Arguments:
 orf (str): A string defining the ID of the gene.
 name (str): A string with the human readable name of the gene.
 desc (str): A string with the description of the gene.
 reads (list): List of lists of read-counts in possible site replicate dataset.
 position (list): List of coordinates of the possible sites.
 start (int): An integer defining the start coordinate for the gene.
 end (int): An integer defining the end coordinate for the gene.
 strand (str): A string defining the strand of the gene.

 Returns:
 Gene: Object of the Gene class with the defined attributes.

 """

 self.orf = orf
 self.name = name
 self.desc = desc
 self.start = start
 self.end = end
 self.strand = strand
 self.reads = numpy.array(reads)
 self.position = numpy.array(position, dtype=int)
 self.tosses = tossify(self.reads)
 try:
 self.runs = runs(self.tosses)
 except Exception as e:
 print(orf, name, self.tosses)
 raise e

 self.k = int(numpy.sum(self.tosses))
 self.n = len(self.tosses)
 try:
 self.r = numpy.max(self.runs)
 except Exception as e:
 print(orf, name, self.tosses)
 print(self.runs)
 raise e

 self.s = self.get_gap_span()
 self.t = self.get_gene_span()

#

[docs] def __getitem__(self, i):
 """Return read-counts at position i.

 Arguments:
 i (int): integer of the index of the desired site.

 Returns:
 list: Reads at position i.
 """
 return self.reads[:, i]

#

[docs] def __str__(self):
 """Return a string representation of the object.

 Returns:
 str: Human readable string with some of the attributes.
 """
 return "%s\t(%s)\tk=%d\tn=%d\tr=%d\ttheta=%1.5f" % (self.orf, self.name, self.k, self.n, self.r, self.theta())

#

[docs] def __eq__(self, other):
 """Compares against other gene object.

 Returns:
 bool: True if the gene objects have same orf id.
 """
 return self.orf == other.orf

#

[docs] def __lt__(self, other):
 """Compares against other gene object.

 Returns:
 bool: True if the gene object id is less than the other.
 """
 return self.orf < other.orf

#

[docs] def get_gap_span(self):
 """Returns the span of the maxrun of the gene (i.e. number of nucleotides).

 Returns:
 int: Number of nucleotides spanned by the max run.
 """
 if len(self.position) > 0:
 if self.r == 0:
 return 0
 index = runindex(self.runs)
 #maxii = numpy.argmax(self.runs)
 maxii = numpy.argwhere(self.runs == numpy.max(self.runs)).flatten()[-1]
 runstart = index[maxii]
 runend = runstart + max(self.runs) - 1
 return self.position[runend] - self.position[runstart] + 2
 else:
 return 0

#

[docs] def get_gene_span(self):
 """Returns the number of nucleotides spanned by the gene.

 Returns:
 int: Number of nucleotides spanned by the gene's sites.
 """
 if len(self.position) > 0:
 return self.position[-1] - self.position[0] + 2
 return 0

#

[docs] def theta(self):
 """Return the insertion density ("theta") for the gene.

 Returns:
 float: Density of the gene (i.e. k/n)
 """
 if self.n:
 return float(self.k)/self.n
 else:
 return 0.0

#

[docs] def phi(self):
 """Return the non-insertion density ("phi") for the gene.

 Returns:
 float: Non-insertion density (i.e. 1 - theta)
 """
 return 1.0 - self.theta()

#

[docs] def total_reads(self):
 """Return the total reads for the gene.

 Returns:
 float: Total sum of read-counts.
 """
 return numpy.sum(self.reads, 1)

#

[docs]class Genes:
 """Class defining a list of Gene objects with useful attributes for TnSeq
 analysis.

 This class helps define a list of Gene objects with attributes that
 facilitate TnSeq analysis. Includes methods that calculate useful statistics
 and even rudamentary analysis of essentiality.

 Attributes:
 wigList: List of paths to datasets in .wig format.
 protTable: String with path to annotation in .prot_table format.
 norm: String with the normalization used/
 reps: String with information on how replicates were handled.
 minread: Integer with the minimum magnitude of read-count considered.
 ignoreCodon: Boolean defining whether to ignore the start/stop codon.
 nterm: Float number of the fraction of the N-terminus to ignore.
 cterm: Float number of the fraction of the C-terminus to ignore.
 include_nc: Boolean determining whether to include non-coding areas.
 orf2index: Dictionary of orf id to index in the genes list.
 genes: List of the Gene objects.

 :Example:

 >>> import pytransit.tnseq_tools as tnseq_tools
 >>> G = tnseq_tools.Genes(["transit/data/glycerol_H37Rv_rep1.wig", "transit/data/glycerol_H37Rv_rep2.wig"], "transit/genomes/H37Rv.prot_table", norm="TTR")
 >>> print(G)
 Genes Object (N=3990)
 >>> print(G.global_theta())
 0.40853707222816626
 >>> print(G["Rv0001"] # Lookup like dictionary)
 Rv0001 (dnaA) k=0 n=31 r=31 theta=0.00000
 >>> print(G[2] # Lookup like list)
 Rv0003 (recF) k=5 n=35 r=14 theta=0.14286
 >>> print(G[2].reads)
 [[62. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0.
 0. 0. 63. 0. 0. 13.
 46. 0. 1. 0. 0. 0.
 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0.]
 [3.14314432 67.26328843 0. 0. 0. 0.
 0. 0. 0. 35.20321637 0. 0.
 0. 0. 30.80281433 0. 101.20924707
 0. 23.25926796 0. 16.97297932 8.17217523
 0. 0. 2.51451546 3.77177318 0.62862886
 0. 0. 69.14917502 0. 0. 0.
 0. 0.]]

 .. seealso:: :class:`Gene`
 """

#

[docs] def __getitem__(self, i):
 """Defines __getitem__ method so that it works as dictionary and list.

 Arguments:
 i (int): Integer or string defining index or orf ID desired.
 Returns:
 Gene: A gene with the index or ID equal to i.
 """
 if isinstance(i, int):
 return(self.genes[i])

 if isinstance(i, str):
 return self.genes[self.orf2index[i]]

#

[docs] def __contains__(self, item):
 """Defines __contains__ to check if gene exists in the list.

 Arguments:
 item (str): String with the id of the gene.

 Returns:
 bool: Boolean with True if item is in the list.
 """
 return item in self.orf2index

#

[docs] def __len__(self):
 """Defines __len__ returning number of genes.

 Returns:
 int: Number of genes in the list.
 """
 return len(self.genes)

#

[docs] def __str__(self):
 """Defines __str__ to print(a generic str with the size of the list.)

 Returns:
 str: Human readable string with number of genes in object.
 """
 return "Genes Object (N=%d)" % len(self.genes)

#

 def __init__(self, wigList, annotation, norm="nonorm", reps="All", minread=1, ignoreCodon = True, nterm=0.0, cterm=0.0, include_nc = False, data=[], position=[],genome="", transposon="himar1"):
 """Initializes the gene list based on the list of wig files and a prot_table.

 This class helps define a list of Gene objects with attributes that
 facilitate TnSeq analysis. Includes methods that calculate useful statistics
 and even rudamentary analysis of essentiality.

 Arguments:
 wigList (list): List of paths to datasets in .wig format.
 protTable (str): String with path to annotation in .prot_table format.
 norm (str): String with the normalization used/
 reps (str): String with information on how replicates were handled.
 minread (int): Integer with the minimum magnitude of read-count considered.
 ignoreCodon (bool): Boolean defining whether to ignore the start/stop codon.
 nterm (float): Float number of the fraction of the N-terminus to ignore.
 cterm (float): Float number of the fraction of the C-terminus to ignore.
 include_nc (bool): Boolean determining whether to include non-coding areas.
 data (list): List of data. Used to define the object without files.
 position (list): List of position of sites. Used to define the object without files.

 """
 self.wigList = wigList
 self.annotation = annotation
 self.norm = norm
 self.reps = reps
 self.minread = minread
 self.ignoreCodon = ignoreCodon
 self.nterm = nterm
 self.cterm = cterm
 self.include_nc = include_nc

 isProt = True
 filename, file_extension = os.path.splitext(self.annotation)
 if file_extension.lower() in [".gff", ".gff3"]:
 isProt = False

 self.orf2index = {}
 self.genes = []

 orf2info = get_gene_info(self.annotation)
 if not numpy.any(data):
 if transposon.lower() == "himar1" and not genome:
 (data, position) = get_data(self.wigList)
 elif genome:
 (data, position) = get_data_w_genome(self.wigList, genome)
 else:
 (data, position) = get_data_zero_fill(self.wigList)

 ii_min = data < self.minread
 data[ii_min] = 0

 hash = get_pos_hash(self.annotation)

 if not noNorm:
 (data, factors) = norm_tools.normalize_data(data, norm, self.wigList, self.annotation)
 else:
 factors = []

 if reps.lower() != "all":
 data = numpy.array([combine_replicates(data, method=reps)])

 K,N = data.shape

 self.data = data
 orf2posindex = {}
 visited_list = []
 for i in range(N):
 genes_with_coord = hash.get(position[i], [])
 for gene in genes_with_coord:
 if gene not in orf2posindex: visited_list.append(gene)
 if gene not in orf2posindex: orf2posindex[gene] = []

 name,desc,start,end,strand = orf2info.get(gene, ["", "", 0, 0, "+"])

 if strand == "+":
 if self.ignoreCodon and position[i] > end - 3:
 continue
 else:
 if self.ignoreCodon and position[i] < start + 3:
 continue

 if (position[i]-start)/float(end-start) < (self.nterm/100.0):
 continue

 if (position[i]-start)/float(end-start) > ((100-self.cterm)/100.0):
 continue

 orf2posindex[gene].append(i)

 count = 0
 for line in open(self.annotation):
 if line.startswith("#"): continue
 tmp = line.split("\t")

 if isProt:
 gene = tmp[8].strip()
 name,desc,start,end,strand = orf2info.get(gene, ["", "", 0, 0, "+"])
 else:
 features = dict([tuple(f.split("=",1)) for f in filter(lambda x: "=" in x, tmp[8].split(";"))])
 gene = features["ID"]
 name,desc,start,end,strand = orf2info.get(gene, ["", "", 0, 0, "+"])
 posindex = orf2posindex.get(gene, [])
 if posindex:
 pos_start = orf2posindex[gene][0]
 pos_end = orf2posindex[gene][-1]
 self.genes.append(Gene(gene, name, desc, data[:, pos_start:pos_end+1], position[pos_start:pos_end+1], start, end, strand))
 else:
 self.genes.append(Gene(gene, name, desc, numpy.array([[]]), numpy.array([]), start, end, strand))
 self.orf2index[gene] = count
 count += 1

#

[docs] def local_insertions(self):
 """Returns numpy array with the number of insertions, 'k', for each gene.

 Returns:
 narray: Numpy array with the number of insertions for all genes.
 """
 G = len(self.genes)
 K = numpy.zeros(G)
 for i in range(G):
 K[i] = self.genes[i].k
 return K

#

[docs] def local_sites(self):
 """Returns numpy array with total number of TA sites, 'n', for each gene.

 Returns:
 narray: Numpy array with the number of sites for all genes.
 """
 G = len(self.genes)
 N = numpy.zeros(G)
 for i in range(G):
 N[i] = self.genes[i].n
 return N

#

[docs] def local_runs(self):
 """Returns numpy array with maximum run of non-insertions, 'r', for each gene.

 Returns:
 narray: Numpy array with the max run of non-insertions for all genes.
 """
 G = len(self.genes)
 R = numpy.zeros(G)
 for i in range(G):
 R[i] = self.genes[i].r
 return R

#

[docs] def local_gap_span(self):
 """Returns numpy array with the span of nucleotides of the largest gap,
 's', for each gene.

 Returns:
 narray: Numpy array with the span of gap for all genes.
 """
 G = len(self.genes)
 S = numpy.zeros(G)
 for i in range(G):
 S[i] = self.genes[i].s
 return S

#

[docs] def local_gene_span(self):
 """Returns numpy array with the span of nucleotides of the gene,
 't', for each gene.

 Returns:
 narray: Numpy array with the span of gene for all genes.
 """
 G = len(self.genes)
 T = numpy.zeros(G)
 for i in range(G):
 T[i] = self.genes[i].t
 return T

#

[docs] def local_reads(self):
 """Returns numpy array of lists containing the read counts for each gene.

 Returns:
 narray: Numpy array with the list of reads for all genes.
 """
 all_reads = []
 G = len(self.genes)
 for i in range(G):
 all_reads.extend(self.genes[i].reads)
 return numpy.array(all_reads)

#

[docs] def local_thetas(self):
 """Returns numpy array of insertion frequencies, 'theta', for each gene.

 Returns:
 narray: Numpy array with the density for all genes.
 """
 G = len(self.genes)
 theta = numpy.zeros(G)
 for i in range(G):
 theta[i] = self.genes[i].theta()
 return theta

#

[docs] def local_phis(self):
 """Returns numpy array of non-insertion frequency, 'phi', for each gene.

 Returns:
 narray: Numpy array with the complement of density for all genes.
 """
 return 1.0 - self.theta()

#

[docs] def global_insertion(self):
 """Returns total number of insertions, i.e. sum of 'k' over all genes.

 Returns:
 float: Total sum of reads across all genes.
 """
 G = len(self.genes)
 total = 0
 for i in range(G):
 total += self.genes[i].k
 return total

#

[docs] def global_sites(self):
 """Returns total number of sites, i.e. sum of 'n' over all genes.

 Returns:
 int: Total number of sites across all genes.
 """
 G = len(self.genes)
 total = 0
 for i in range(G):
 total += self.genes[i].n
 return total

#

[docs] def global_run(self):
 """Returns the run assuming all genes were concatenated together.

 Returns:
 int: Max run across all genes.
 """
 return maxrun(self.tosses())

#

[docs] def global_reads(self):
 """Returns the reads among the library.

 Returns:
 list: List of all the data.
 """
 return self.data

#

[docs] def global_theta(self):
 """Returns global insertion frequency, of the library.

 Returns:
 float: Total sites with insertions divided by total sites.
 """
 return float(self.global_insertion())/self.global_sites()

#

[docs] def global_phi(self):
 """Returns global non-insertion frequency, of the library.

 Returns:
 float: Complement of global theta i.e. 1.0-theta
 """
 return 1.0 - self.global_theta()

#

[docs] def total_reads(self):
 """Returns total reads among the library.

 Returns:
 float: Total sum of read-counts accross all genes.
 """
 reads_total = 0
 for g in self.genes:
 reads_total += g.total_reads()
 return reads_total

#

[docs] def tosses(self):
 """Returns list of bernoulli trials, 'tosses', representing insertions in the gene.

 Returns:
 list: Sites represented as bernoulli trials with insertions as true.
 """
 all_tosses = []
 for g in self.genes:
 all_tosses.extend(g.tosses)
 return all_tosses

#

[docs]def tossify(data):
 """Reduces the data into Bernoulli trials (or 'tosses') based on whether counts were observed or not.

 Arguments:
 data (list): List of numeric data.

 Returns:
 list: Data represented as bernoulli trials with >0 as true.
 """
 K,N = data.shape
 reduced = numpy.sum(data,0)
 return numpy.zeros(N) + (numpy.sum(data, 0) > 0)

#

[docs]def runs(data):
 """Return list of all the runs of consecutive non-insertions.

 Arguments:
 data (list): List of numeric data.

 Returns:
 list: List of the length of the runs of non-insertions. Non-zero sites are treated as runs of zero.
 """
 runs = []
 current_r = 0
 for read in data:
 if read > 0: # If ending a run of zeros
 if current_r > 0: # If we were in a run, add to list
 runs.append(current_r)
 current_r = 0
 runs.append(current_r)
 else:
 current_r += 1
 # If we ended in a run, add it
 if current_r > 0:
 runs.append(current_r)

 if not runs:
 return [0]
 return runs

#

[docs]def runindex(runs):
 """Returns a list of the indexes of the start of the runs; complements runs().

 Arguments:
 runs (list): List of numeric data.

 Returns:
 list: List of the index of the runs of non-insertions. Non-zero sites are treated as runs of zero.
 """
 index = 0
 index_list = []
 runindex = 0
 for r in runs:
 for i in range(r):
 if i == 0:
 runindex = index
 index+=1
 if r == 0:
 runindex = index
 index+=1
 index_list.append(runindex)
 return index_list

#

[docs]def get_file_types(wig_list):
 """Returns the transposon type (himar1/tn5) of the list of wig files.

 Arguments:
 wig_list (list): List of paths to wig files.

 Returns:
 list: List of transposon type ("himar1" or "tn5").
 """
 if not wig_list:
 return []

 types = ['tn5' for i in range(len(wig_list))]
 for i, wig_filename in enumerate(wig_list):
 with open(wig_filename) as wig_file:
 prev_pos = 0
 for line in wig_file:
 if line[0] not in "0123456789": continue
 tmp = line.split()
 pos = int(tmp[0])
 rd = float(tmp[1])
 if pos != prev_pos + 1:
 types[i] = 'himar1'
 break
 prev_pos = pos
 return types

[docs]def check_wig_includes_zeros(wig_list):
 """Returns boolean list showing whether the given files include empty sites
 (zero) or not.

 Arguments:
 wig_list (list): List of paths to wig files.

 Returns:
 list: List of boolean values.
 """
 if not wig_list:
 return []
 includes = [False for i in range(len(wig_list))]
 for i, wig_filename in enumerate(wig_list):
 with open(wig_filename) as wig_file:
 for line in wig_file:
 if line[0] not in "0123456789": continue
 tmp = line.split()
 pos = int(tmp[0])
 rd = float(tmp[1])
 if rd == 0:
 includes[i] = True
 break
 return includes

#

[docs]def get_unknown_file_types(wig_list, transposons):
 """ """
 #TODO
 file_types = set(get_file_types(wig_list))
 method_types = set(transposons)
 extra_types = list(file_types - method_types)
 return extra_types

#

[docs]def get_data(wig_list):
 """ Returns a tuple of (data, position) containing a matrix of raw read-counts
 , and list of coordinates.

 Arguments:
 wig_list (list): List of paths to wig files.

 Returns:
 tuple: Two lists containing data and positions of the wig files given.

 :Example:

 >>> import pytransit.tnseq_tools as tnseq_tools
 >>> (data, position) = tnseq_tools.get_data(["data/glycerol_H37Rv_rep1.wig", "data/glycerol_H37Rv_rep2.wig"])
 >>> print(data)
 array([[0., 0., 0., ..., 0., 0., 0.],
 [0., 0., 0., ..., 0., 0., 0.]])

 .. seealso:: :class:`get_file_types` :class:`combine_replicates` :class:`get_data_zero_fill` :class:`pytransit.norm_tools.normalize_data`
 """
 K = len(wig_list)

 # If empty just quickly return empty lists
 if not wig_list:
 return (numpy.zeros((1,0)), numpy.zeros(0), [])

 # Check size of all wig file matches
 size_list = []
 for j,path in enumerate(wig_list):
 T = 0
 for line in open(path):
 if line[0] not in "0123456789": continue
 T+=1
 size_list.append(T)

 # If it doesn't match, report an error and quit
 if sum(size_list) != (T * len(size_list)):
 print("Error: Not all wig files have the same number of sites.")
 print(" Make sure all .wig files come from the same strain.")
 sys.exit()

 data = numpy.zeros((K,T))
 position = numpy.zeros(T, dtype=int)
 for j,path in enumerate(wig_list):
 reads = []
 i = 0
 prev_pos = 0
 for line in open(path):
 if line[0] not in "0123456789": continue
 tmp = line.split()
 pos = int(tmp[0])
 rd = float(tmp[1])
 prev_pos = pos

 try:
 data[j,i] = rd
 except Exception as e:
 print("Error: %s" % e)
 print("")
 print("Make sure that all wig files have the same number of TA sites (i.e. same strain)")
 sys.exit()
 position[i] = pos
 i+=1
 return (data, position)

#

[docs]def get_data_zero_fill(wig_list):
 """ Returns a tuple of (data, position) containing a matrix of raw read counts,
 and list of coordinates. Positions that are missing are filled in as zero.

 Arguments:
 wig_list (list): List of paths to wig files.

 Returns:
 tuple: Two lists containing data and positions of the wig files given.
 """

 K = len(wig_list)
 T = 0

 if not wig_list:
 return (numpy.zeros((1,0)), numpy.zeros(0), [])

 #NOTE: This might be slow as we need to find the last insertion site
 # over all the replicates. This might be an area to attempt to optimize.
 last_line = ''
 for wig_name in wig_list:
 for line in open(wig_name):
 if line[0] not in "0123456789": continue
 last_line = line
 pos = int(last_line.split()[0])
 T = max(T,pos)

 if T == 0:
 return (numpy.zeros((1,0)), numpy.zeros(0), [])

 data = numpy.zeros((K,T))
 position = numpy.array(range(T)) + 1#numpy.zeros(T)
 for j,path in enumerate(wig_list):
 reads = []
 i = 0
 for line in open(path):
 if line[0] not in "0123456789": continue
 tmp = line.split()
 pos = int(tmp[0])
 rd = float(tmp[1])
 prev_pos = pos
 data[j,pos-1] = rd
 i+=1
 return (data, position)

[docs]def get_data_w_genome(wig_list, genome):

 X = read_genome(genome)
 N = len(X)
 positions = []
 pos2index = {}
 count = 0
 for i in range(N-1):
 if X[i:i+2].upper() == "TA":
 pos = i+1
 positions.append(pos)
 pos2index[pos] = count
 count +=1

 positions = numpy.array(positions)
 T = len(positions)
 K = len(wig_list)
 data = numpy.zeros((K,T))
 for j,path in enumerate(wig_list):
 for line in open(path):
 if line[0] not in "0123456789": continue
 tmp = line.split()
 pos = int(tmp[0])
 rd = float(tmp[1])
 if pos in pos2index:
 index = pos2index[pos]
 data[j,index] = rd
 else:
 print("Warning: Coordinate %d did not match a TA site in the genome. Ignoring counts." %(pos))
 return (data, positions)

#

[docs]def combine_replicates(data, method="Sum"):
 """Returns list of data merged together.

 Arguments:
 data (list): List of numeric (replicate) data to be merged.
 method (str): How to combine the replicate dataset.

 Returns:
 list: List of numeric dataset now merged together.
 """

 if method == "Sum":
 combined = numpy.round(numpy.sum(data,0))
 elif method == "Mean":
 combined = numpy.round(numpy.mean(data,0))
 elif method == "TTRMean":
 #factors = norm_tools.TTR_factors(data)
 #data = factors * data
 (data, factors) = norm_tools.normalize_data(data, "TTR")
 target_factors = norm_tools.norm_to_target(data, 100)
 data = target_factors * data
 combined = numpy.round(numpy.mean(data,0))
 else:
 combined = data[0,:]

 return combined

#

[docs]def get_data_stats(reads):
 density = numpy.mean(reads>0)
 meanrd = numpy.mean(reads)
 nzmeanrd = numpy.mean(reads[reads>0])
 nzmedianrd = numpy.median(reads[reads>0])
 maxrd = numpy.max(reads)
 totalrd = numpy.sum(reads)

 skew = scipy.stats.skew(reads[reads>0])
 kurtosis = scipy.stats.kurtosis(reads[reads>0])
 return (density, meanrd, nzmeanrd, nzmedianrd, maxrd, totalrd, skew, kurtosis)

[docs]def get_wig_stats(path):
 """Returns statistics for the given wig file with read-counts.

 Arguments:
 path (str): String with the path to the wig file of interest.

 Returns:
 tuple: Tuple with the following statistical measures:
 - density
 - mean read
 - non-zero mean
 - non-zero median
 - max read
 - total reads
 - skew
 - kurtosis
 """
 (data,position) = get_data([path])
 reads = data[0]
 return get_data_stats(reads)

#

[docs]def get_extended_pos_hash_pt(path, N=None):
 #TODO: Write docstring

 hash = {}
 maxcoord = float("-inf")
 data = []
 for line in open(path):
 if line.startswith("#"): continue
 tmp = line.split("\t")
 orf = tmp[8]
 start = int(tmp[1])
 end = int(tmp[2])
 maxcoord = max(maxcoord, start, end)
 data.append((orf, start, end))

 genome_start = 1
 if N:
 genome_end = maxcoord
 else:
 genome_end = N

 for i,(orf, start, end) in enumerate(data):
 if genome_start > start:
 genome_start = start

 prev_orf = ""
 if i > 0:
 prev_orf = data[i-1][0]

 next_orf = ""
 if i < len(data)-1:
 next_orf = data[i+1][0]

 for pos in range(genome_start, end+1):
 if pos not in hash: hash[pos] = {"current":[], "prev":[], "next":[]}

 hash[pos]["prev"].append(prev_orf)

 if pos >= start:
 hash[pos]["next"].append(next_orf)
 hash[pos]["current"].append(orf)
 else:
 hash[pos]["next"].append(orf)
 genome_start = end+1

 if N:
 for pos in range(maxcoord, genome_end+1):
 if pos not in hash: hash[pos] = {"current":[], "prev":[], "next":[]}
 hash[pos]["prev"].append(prev_orf)
 return hash

[docs]def get_extended_pos_hash_gff(path, N=None):
 #TODO: Write docstring

 hash = {}
 maxcoord = float("-inf")
 data = []
 for line in open(path):
 if line.startswith("#"): continue
 tmp = line.strip().split("\t")
 features = dict([tuple(f.split("=")) for f in tmp[8].split(";")])
 if "ID" not in features: continue
 orf = features["ID"]
 chr = tmp[0]
 type = tmp[2]
 start = int(tmp[3])
 end = int(tmp[4])
 maxcoord = max(maxcoord, start, end)
 data.append((orf,start,end))

 genome_start = 1
 if N:
 genome_end = maxcoord
 else:
 genome_end = N

 for i,(orf, start, end) in enumerate(data):

 if genome_start > start:
 genome_start = start

 prev_orf = ""
 if i > 0:
 prev_orf = data[i-1][0]

 next_orf = ""
 if i < len(data)-1:
 next_orf = data[i+1][0]

 for pos in range(genome_start, end+1):
 if pos not in hash: hash[pos] = {"current":[], "prev":[], "next":[]}

 hash[pos]["prev"].append(prev_orf)

 if pos >= start:
 hash[pos]["next"].append(next_orf)
 hash[pos]["current"].append(orf)
 else:
 hash[pos]["next"].append(orf)
 genome_start = end+1

 if N:
 for pos in range(maxcoord, genome_end+1):
 if pos not in hash: hash[pos] = {"current":[], "prev":[], "next":[]}
 hash[pos]["prev"].append(prev_orf)
 return hash

[docs]def get_pos_hash_pt(path):
 """Returns a dictionary that maps coordinates to a list of genes that occur at that coordinate.

 Arguments:
 path (str): Path to annotation in .prot_table format.

 Returns:
 dict: Dictionary of position to list of genes that share that position.
 """
 hash = {}
 for line in open(path):
 if line.startswith("#"): continue
 tmp = line.strip().split("\t")
 orf = tmp[8]
 start = int(tmp[1])
 end = int(tmp[2])
 for pos in range(start, end+1):
 if pos not in hash: hash[pos] = []
 hash[pos].append(orf)
 return hash

#

[docs]def get_pos_hash_gff(path):
 """Returns a dictionary that maps coordinates to a list of genes that occur at that coordinate.

 Arguments:
 path (str): Path to annotation in GFF3 format.

 Returns:
 dict: Dictionary of position to list of genes that share that position.
 """
 hash = {}
 for line in open(path):
 if line.startswith("#"): continue
 tmp = line.strip().split("\t")
 features = dict([tuple(f.split("=",1)) for f in filter(lambda x: "=" in x, tmp[8].split(";"))])
 if "ID" not in features: continue
 orf = features["ID"]
 chr = tmp[0]
 type = tmp[2]
 start = int(tmp[3])
 end = int(tmp[4])
 for pos in range(start, end+1):
 if pos not in hash: hash[pos] = []
 hash[pos].append(orf)
 return hash

#

[docs]def get_pos_hash(path):
 """Returns a dictionary that maps coordinates to a list of genes that occur at that coordinate.

 Arguments:
 path (str): Path to annotation in .prot_table or GFF3 format.

 Returns:
 dict: Dictionary of position to list of genes that share that position.
 """
 filename, file_extension = os.path.splitext(path)
 if file_extension.lower() in [".gff", ".gff3"]:
 return get_pos_hash_gff(path)
 else:
 return get_pos_hash_pt(path)

#

[docs]def get_gene_info_pt(path):
 """Returns a dictionary that maps gene id to gene information.

 Arguments:
 path (str): Path to annotation in .prot_table format.

 Returns:
 dict: Dictionary of gene id to tuple of information:
 - name
 - description
 - start coordinate
 - end coordinate
 - strand

 """
 orf2info = {}
 for line in open(path):
 if line.startswith("#"): continue
 tmp = line.strip().split("\t")
 orf = tmp[8]
 name = tmp[7]
 desc = tmp[0]
 start = int(tmp[1])
 end = int(tmp[2])
 strand = tmp[3]
 orf2info[orf] = (name, desc, start, end, strand)
 return orf2info

#

[docs]def get_gene_info_gff(path):
 """Returns a dictionary that maps gene id to gene information.

 Arguments:
 path (str): Path to annotation in GFF3 format.

 Returns:
 dict: Dictionary of gene id to tuple of information:
 - name
 - description
 - start coordinate
 - end coordinate
 - strand

 """
 orf2info = {}
 for line in open(path):
 if line.startswith("#"): continue
 tmp = line.strip().split("\t")
 chr = tmp[0]
 type = tmp[2]
 start = int(tmp[3])
 end = int(tmp[4])
 length = ((end-start+1)/3)-1
 strand = tmp[6]
 features = dict([tuple(f.split("=",1)) for f in filter(lambda x: "=" in x, tmp[8].split(";"))])
 if "ID" not in features: continue
 orf = features["ID"]
 name = features.get("Name", "-")
 if name == "-": name = features.get("name", "-")

 desc = features.get("Description", "-")
 if desc == "-": desc = features.get("description", "-")
 if desc == "-": desc = features.get("Desc", "-")
 if desc == "-": desc = features.get("desc", "-")
 if desc == "-": desc = features.get("product", "-")

 orf2info[orf] = (name, desc, start, end, strand)
 return orf2info

#

[docs]def get_gene_info(path):
 """Returns a dictionary that maps gene id to gene information.

 Arguments:
 path (str): Path to annotation in .prot_table or GFF3 format.

 Returns:
 dict: Dictionary of gene id to tuple of information:
 - name
 - description
 - start coordinate
 - end coordinate
 - strand

 """
 filename, file_extension = os.path.splitext(path)
 if file_extension.lower() in [".gff", ".gff3"]:
 return get_gene_info_gff(path)
 else:
 return get_gene_info_pt(path)

#

[docs]def get_coordinate_map(galign_path, reverse=False):
 """Attempts to get mapping of coordinates from galign file.

 Arguments:
 path (str): Path to .galign file.
 reverse (bool): Boolean specifying whether to do A to B or B to A.

 Returns:
 dict: Dictionary of coordinate in one file to another file.
 """
 c1Toc2 = {}
 for line in open(galign_path):
 if line.startswith("#"): continue
 tmp = line.split()
 star = line.strip().endswith("*")
 leftempty = tmp[0].startswith("-")
 rightempty = tmp[1].endswith("-")
 if leftempty:
 left = -1
 else:
 left = int(tmp[0])
 if rightempty:
 right = -1
 elif leftempty:
 right = int(tmp[1])
 else:
 right = int(tmp[2])

 if not reverse:
 if not leftempty:
 c1Toc2[left] = right
 else:
 if not rightempty:
 c1Toc2[right] = left
 return c1Toc2

#

[docs]def read_genome(path):
 """Reads in FASTA formatted genome file.

 Arguments:
 path (str): Path to .galign file.

 Returns:
 string: String with the genomic sequence.
 """
 seq = ""
 for line in open(path):
 if line.startswith(">"): continue
 seq += line.strip()
 return seq

#

[docs]def maxrun(lst,item=0):
 """Returns the length of the maximum run an item in a given list.

 Arguments:
 lst (list): List of numeric items.
 item (float): Number to look for consecutive runs of.

 Returns:
 int: Length of the maximum run of consecutive instances of item.
 """
 best = 0
 i,n = 0,len(lst)
 while i<n:
 if lst[i]==item:
 j = i+1
 while j<n and lst[j]==item: j += 1
 r = j-i
 if r>best: best = r
 i = j
 else: i += 1
 return best

#

[docs]def getR1(n):
 """Small Correction term. Defaults to 0.000016 for now"""
 return(0.000016)

#

[docs]def getR2(n):
 """Small Correction term. Defaults to 0.00006 for now"""
 return(0.00006)

#

[docs]def getE1(n):
 """Small Correction term. Defaults to 0.01 for now"""
 return(0.01)

#

[docs]def getE2(n):
 """Small Correction term. Defaults to 0.01 for now"""
 return(0.01)

#

[docs]def getGamma():
 """Euler-Mascheroni constant ~ 0.577215664901 """
 return(0.5772156649015328606)

#

[docs]def ExpectedRuns(n,pnon):
 """Expected value of the run of non=insertions (Schilling, 1990):

 ER_n = log(1/p)(nq) + gamma/ln(1/p) -1/2 + r1(n) + E1(n)

 Arguments:
 n (int): Integer representing the number of sites.
 pins (float): Floating point number representing the probability of non-insertion.

 Returns:
 float: Size of the expected maximum run.

 """
 if n<20: # use exact calculation for genes with less than 20 TA sites
 # Eqn 17-20 in Boyd, https://www.math.ubc.ca/~boyd/bern.runs/bernoulli.html
 # recurrence relations for F(n,k) = prob that max run has length k
 p,q = 1-pnon,pnon
 F = numpy.ones((n+1,n+1))
 for k in range(n): F[k+1,k] = 1-numpy.power(q,k+1)
 for k in range(n+1):
 for n in range(n+1):
 if n>=k+2: F[n,k] = F[n-1,k]-p*numpy.power(q,k+1)*F[n-k-2,k]
 ERn = 0
 for k in range(1,n+1): ERn += k*(F[n,k]-F[n,k-1])
 return ERn

 pins = 1-pnon
 gamma = getGamma()
 r1 = getR1(n)
 E1 = getE1(n)
 A = math.log(n*pins,1.0/pnon)
 B = gamma/math.log(1.0/pnon)
 ER = A + B -0.5 + r1 + E1
 return ER

#

[docs]def VarR(n,pnon):
 """Variance of the expected run of non-insertons (Schilling, 1990):

 .. math::

 VarR_n = (pi^2)/(6*ln(1/p)^2) + 1/12 + r2(n) + E2(n)

 Arguments:
 n (int): Integer representing the number of sites.
 pnon (float): Floating point number representing the probability of non-insertion.

 Returns:
 float: Variance of the length of the maximum run.
 """
 r2 = getR2(n)
 E2 = getE2(n)
 A = math.pow(math.pi,2.0)/(6* math.pow(math.log(1.0/pnon),2.0))
 V = A + 1/12.0 + r2 + E2
 return V

#

[docs]def GumbelCDF(x,u,B):
 """CDF of the Gumbel distribution:

 e^(-e^((u-x)/B))

 Arguments:
 x (int): Length of the max run.
 u (float): Location parameter of the Gumbel dist.
 B (float): Scale parameter of the Gumbel dist.

 Returns:
 float: Cumulative probability o the Gumbel distribution.
 """
 return (math.exp(-1 * math.exp((u-x)/B)))

#

[docs]def griffin_analysis(genes_obj, pins):
 """Implements the basic Gumbel analysis of runs of non-insertion, described in Griffin et al. 2011.

 This analysis method calculates a p-value of observing the maximun run of
 TA sites without insertions in a row (i.e. a "run", r). Unusually long
 runs are indicative of an essential gene or protein domain. Assumes that
 there is a constant, global probability of observing an insertion
 (tantamount to a Bernoulli probability of success).

 Arguments:
 genes_obj (Genes): An object of the Genes class defining the genes.
 pins (float): The probability of insertion.

 Returns:
 list: List of lists with results and information for the genes. The elements of the list are as follows:
 - ORF ID.
 - Gene Name.
 - Gene Description.
 - Number of TA sites with insertions.
 - Number of TA sites.
 - Length of largest run of non-insertion.
 - Expected run for a gene this size.
 - p-value of the observed run.
 """

 pnon = 1.0 - pins
 results = []
 for gene in genes_obj:
 if gene.n == 0:
 results.append([gene.orf, gene.name, gene.desc, gene.k, gene.n, gene.r, 0.0, 1.000])
 else:
 # do I need to estimate B better (using exact calc for variance) for small genes too?
 B = 1.0/math.log(1.0/pnon) # beta param of Gumbel distn; like tau in our Bioinfo paper
 #u = math.log(gene.n*pins, 1.0/pnon) # instead, calculate this based on estimate of ExpectedRun() length below
 exprun = ExpectedRuns(gene.n, pnon)
 # u is mu of Gumbel (mean=mu+gamma*beta); matching of moments; like Eq 5 in Schilling, but subtract off unneeded terms
 u = exprun-getGamma()/math.log(1.0/pnon)
 pval = 1.0 - GumbelCDF(gene.r, u, B)
 results.append([gene.orf, gene.name, gene.desc, gene.k, gene.n, gene.r, exprun, pval])
 return(results)

#

[docs]def runs_w_info(data):
 """Return list of all the runs of consecutive non-insertions with the start and end locations.

 Arguments:
 data (list): List of numeric data to check for runs.

 Returns:
 list: List of dictionary from run to length and position information of the tun.
 """
 runs = []
 start = 1
 current_r = 0
 for read in data:
 if read > 0: # If ending a run of zeros
 if current_r > 0: # If we were in a run, add to list
 end = start + current_r - 1
 runs.append(dict(length = current_r, start = start, end = end))
 start = start + (current_r + 1)
 current_r = 0
 else:
 current_r += 1

 # If we ended in a run, add it
 if current_r > 0:
 end = start + current_r - 1
 runs.append(dict(length = current_r, start = start, end = end))
 return runs

#

[docs]def get_genes_in_range(pos_hash, start, end):
 """Returns list of genes that occur in a given range of coordinates.

 Arguments:
 pos_hash (dict): Dictionary of position to list of genes.
 start (int): Start coordinate of the desired range.
 end (int): End coordinate of the desired range.

 Returns:
 list: List of genes that fall within range.

 """

 genes = set()
 for pos in range(start, end + 1):
 if pos in pos_hash:
 genes.update(pos_hash[pos])

 return list(sorted(genes))

if __name__ == "__main__":

 G = Genes(sys.argv[1].split(","), sys.argv[2], norm="TTR")
 theta = G.global_theta()
 print("#Insertion: %s" % G.global_insertion())
 print("#Sites: %s" % G.global_sites())
 print("#Run: %s" % G.global_run())
 print("#Theta: %1.4f" % theta)
 print("#Phi: %1.4f" % G.global_phi())
 print("#")

 griffin_results = griffin_analysis(G, theta)
 for i,gene in enumerate(G):
 pos = gene.position
 exprun, pval = griffin_results[i][-2:]
 print("%s\t%s\t%s\t%s\t%s\t%s\t%s\t%1.1f\t%1.5f" % (gene.orf, gene.name, gene.k, gene.n, gene.r, gene.s, gene.t, exprun, pval))

 Source code for pytransit.transit_tools

Copyright 2015.
Michael A. DeJesus, Chaitra Ambadipudi, and Thomas R. Ioerger.
#
#
This file is part of TRANSIT.
#
TRANSIT is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License.
#
#
TRANSIT is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with TRANSIT. If not, see <http://www.gnu.org/licenses/>.

import sys
import os

try:
 import wx
 WX_VERSION = int(wx.version()[0])
 hasWx = True

except Exception as e:
 hasWx = False
 WX_VERSION = 0

if hasWx:
 import wx.xrc
 from wx.lib.buttons import GenBitmapTextButton
 from pubsub import pub
 import wx.adv

import math
import ntpath
import numpy
import scipy.optimize
import scipy.stats

import warnings

import pytransit
import pytransit.tnseq_tools as tnseq_tools
import pytransit.norm_tools as norm_tools

if hasWx:
 class AssumeZerosDialog(wx.Dialog):

 def __init__(self, *args, **kw):

 self.ID_HIMAR1 = wx.NewId()
 self.ID_TN5 = wx.NewId()

 wx.Dialog.__init__(self, None, title="Dialog")

 self.ID_HIMAR1 = wx.NewId()
 self.ID_TN5 = wx.NewId()

 self.SetSize((500, 300))
 self.SetTitle("Warning: Wig Files Do Not Include Empty Sites")

 mainSizer = wx.BoxSizer(wx.VERTICAL)
 self.SetSizer(mainSizer)

 warningText = """

One or more of your .wig files does not include any empty sites (i.e. sites with zero read-counts). The analysis methods in TRANSIT require knowing ALL possible insertion sites, even those without reads.

 Please indicate how you want to proceed:

 As Himar1: You will need to provide the DNA sequence (.fasta format) and TRANSIT will automatically determine empty TA sites.

 As Tn5: TRANSIT will assume all nucleotides are possible insertion sites. Those not included in the .wig file are assumed to be zero.
 """
 warningStaticBox = wx.StaticText(self, wx.ID_ANY, warningText, (-1,-1), (-1, -1), wx.ALL)
 warningStaticBox.Wrap(480)
 mainSizer.Add(warningStaticBox, flag=wx.CENTER, border=5)

 button_sizer = wx.BoxSizer(wx.HORIZONTAL)
 himar1Button = wx.Button(self, self.ID_HIMAR1, label='Proceed as Himar1')
 tn5Button = wx.Button(self, self.ID_TN5, label='Proceed as Tn5')
 cancelButton = wx.Button(self, wx.ID_CANCEL, label='Cancel')

 button_sizer.Add(himar1Button, flag=wx.LEFT, border=5)
 button_sizer.Add(tn5Button, flag=wx.LEFT, border=5)
 button_sizer.Add(cancelButton, flag=wx.LEFT, border=5)

 mainSizer.Add(button_sizer,
 flag=wx.ALIGN_CENTER|wx.TOP|wx.BOTTOM, border=10)

 himar1Button.Bind(wx.EVT_BUTTON, self.OnClose)
 tn5Button.Bind(wx.EVT_BUTTON, self.OnClose)
 cancelButton.Bind(wx.EVT_BUTTON, self.OnClose)

 def OnClose(self, event):

 if self.IsModal():
 self.EndModal(event.EventObject.Id)
 else:
 self.Close()

[docs]def aton(aa):
 #TODO: Write docstring
 return(((aa-1)*3)+1)

[docs]def parseCoords(strand, aa_start, aa_end, start, end):
 #TODO: Write docstring
 if strand == "+":
 return((aton(aa_start) + start, aton(aa_end) + start))
 # Coordinates are Reversed... to match with Trash FILE TA coordinates
 if strand == "-":
 return((end - aton(aa_end), end - aton(aa_start)))

[docs]def fetch_name(filepath):
 #TODO: Write docstring
 return os.path.splitext(ntpath.basename(filepath))[0]

[docs]def basename(filepath):
 #TODO: Write docstring
 return ntpath.basename(filepath)

[docs]def dirname(filepath):
 return os.path.dirname(os.path.abspath(filepath))

[docs]def cleanargs(rawargs):
 """Returns a list and a dictionary with positional and keyword arguments.

 -This function assumes flags must start with a "-" and and cannot be a
 number (but can include them).

 -Flags should either be followed by the value they want to be associated
 with (i.e. -p 5) or will be assigned a value of True in the dictionary.

 -The dictionary will map flags to the name given minus ONE "-" sign in
 front. If you use TWO minus signs in the flag name (i.e. --verbose),
 the dictionary key will be the name with ONE minus sign in front
 (i.e. {"-verbose":True}).

 Arguments:
 rawargs (list): List of positional/keyword arguments. As obtained from
 sys.argv.

 Returns:
 list: List of positional arguments (i.e. arguments without flags),
 in order provided.
 dict: Dictionary mapping flag (key is flag minus the first "-") and
 their values.

 """
 args = []
 kwargs = {}
 count = 0
 # Loop through list of arguments
 while count < len(rawargs):
 # If the current argument starts with "-", then it's probably a flag
 if rawargs[count].startswith("-"):
 # Check if next argument is a number
 try:
 temp = float(rawargs[count+1])
 nextIsNumber = True
 except:
 nextIsNumber = False

 stillNotFinished = count + 1 < len(rawargs)
 if stillNotFinished:
 nextIsNotArgument = not rawargs[count+1].startswith("-")
 nextLooksLikeList = len(rawargs[count+1].split(" ")) > 1
 else:
 nextIsNotArgument = True
 nextLooksLikeList = False

 # If still things in list, and they look like arguments to a flag, add them to dict
 if stillNotFinished and (nextIsNotArgument or nextLooksLikeList or nextIsNumber):
 kwargs[rawargs[count][1:]] = rawargs[count+1]
 count += 1
 # Else it's a flag but without arguments/values so assign it True
 else:
 kwargs[rawargs[count][1:]] = True
 # Else, it's probably a positional arguement without flags
 else:
 args.append(rawargs[count])
 count += 1
 return (args, kwargs)

[docs]def getTabTableData(path, colnames):
 #TODO: Write docstring
 row = 0
 data = []
 for line in open(path):
 if line.startswith("#"): continue
 tmp = line.split("\t")
 tmp[-1] = tmp[-1].strip()
 rowdict = dict([(colnames[i], tmp[i]) for i in range(len(colnames))])
 data.append((row, rowdict))
 row+=1

 return data

[docs]def ShowMessage(MSG=""):
 #TODO: Write docstring
 wx.MessageBox(MSG, 'Info',
 wx.OK | wx.ICON_INFORMATION)

[docs]def ShowAskWarning(MSG=""):
 #TODO: Write docstring
 dial = wx.MessageDialog(None, MSG, 'Warning',
 wx.OK | wx.CANCEL | wx.ICON_EXCLAMATION)
 return dial.ShowModal()

[docs]def ShowError(MSG=""):
 #TODO: Write docstring
 dial = wx.MessageDialog(None, MSG, 'Error',
 wx.OK | wx.ICON_ERROR)
 dial.ShowModal()

[docs]def transit_message(msg="", prefix=""):
 #TODO: Write docstring
 if prefix:
 print(prefix, msg)
 else:
 print(pytransit.prefix, msg)

[docs]def transit_error(text):
 #TODO: Write docstring
 transit_message(text)
 try:
 ShowError(text)
 except:
 pass

[docs]def validate_annotation(annotation):
 #TODO: Write docstring
 if not annotation or not os.path.exists(annotation):
 transit_error("Error: No or Invalid annotation file selected!")
 return False
 return True

[docs]def validate_control_datasets(ctrldata):
 #TODO: Write docstring
 if len(ctrldata) == 0:
 transit_error("Error: No control datasets selected!")
 return False
 return True

[docs]def validate_both_datasets(ctrldata, expdata):
 #TODO: Write docstring
 if len(ctrldata) == 0 and len(expdata) == 0:
 transit_error("Error: No datasets selected!")
 return False
 elif len(ctrldata) == 0:
 transit_error("Error: No control datasets selected!")
 return False
 elif len(expdata) == 0:
 transit_error("Error: No experimental datasets selected!")
 return False
 else:
 return True

[docs]def validate_transposons_used(datasets, transposons, justWarn=True):

 #TODO: Write docstring
 # Check if transposon type is okay.
 unknown = tnseq_tools.get_unknown_file_types(datasets, transposons)
 if unknown:
 if justWarn:
 answer = ShowAskWarning("Warning: Some of the selected datasets look like they were created using transposons that this method was not intended to work with: %s. Proceeding may lead to errors. Click OK to continue." % (",". join(unknown)))
 if answer == wx.ID_CANCEL:
 return False
 else:
 return True
 else:
 transit_error("Error: Some of the selected datasets look like they were created using transposons that this method was not intended to work with: %s." % (",". join(unknown)))
 return False

 return True

[docs]def validate_wig_format(wig_list, wxobj=None):
 # Check if the .wig files include zeros or not
 status = 0
 genome = ""
 includesZeros = tnseq_tools.check_wig_includes_zeros(wig_list)

 if sum(includesZeros) < len(includesZeros):
 # If console mode, just print(a warning)
 if not wxobj or not hasWx:
 warnings.warn("\nOne or more of your .wig files does not include any empty sites (i.e. sites with zero read-counts). Proceeding as if data was Tn5 (all other sites assumed to be zero)!\n")
 return (2, "")

 # Else check their decision
 dlg = AssumeZerosDialog()
 result = dlg.ShowModal()
 if result == dlg.ID_HIMAR1 and wxobj:
 status = 1
 # Get genome
 wc = u"Known Sequence Extensions (*.fna,*.fasta)|*.fna;*.fasta;|\nAll files (*.*)|*.*"
 gen_dlg = wx.FileDialog(wxobj, message="Save file as ...", defaultDir=os.getcwd(), defaultFile="", wildcard=wc, style=wx.FD_OPEN)
 if gen_dlg.ShowModal() == wx.ID_OK:
 genome = gen_dlg.GetPath()
 else:
 genome = ""

 elif result == dlg.ID_TN5:
 status = 2; genome = ""
 else:
 status = 3; genome = ""
 return (status, genome)

[docs]def validate_filetypes(datasets, transposons, justWarn=True):
 validate_transposons_used(datasets, transposons, justWarn)

[docs]def get_pos_hash(path):
 """Returns a dictionary that maps coordinates to a list of genes that occur at that coordinate.

 Arguments:
 path (str): Path to annotation in .prot_table or GFF3 format.

 Returns:
 dict: Dictionary of position to list of genes that share that position.
 """
 filename, file_extension = os.path.splitext(path)
 if file_extension.lower() in [".gff", ".gff3"]:
 return tnseq_tools.get_pos_hash_gff(path)
 else:
 return tnseq_tools.get_pos_hash_pt(path)

[docs]def get_extended_pos_hash(path):
 """Returns a dictionary that maps coordinates to a list of genes that occur at that coordinate.

 Arguments:
 path (str): Path to annotation in .prot_table or GFF3 format.

 Returns:
 dict: Dictionary of position to list of genes that share that position.
 """
 filename, file_extension = os.path.splitext(path)
 if file_extension.lower() in [".gff", ".gff3"]:
 return tnseq_tools.get_extended_pos_hash_gff(path)
 else:
 return tnseq_tools.get_extended_pos_hash_pt(path)

[docs]def get_gene_info(path):
 """Returns a dictionary that maps gene id to gene information.

 Arguments:
 path (str): Path to annotation in .prot_table or GFF3 format.

 Returns:
 dict: Dictionary of gene id to tuple of information:
 - name
 - description
 - start coordinate
 - end coordinate
 - strand

 """
 filename, file_extension = os.path.splitext(path)
 if file_extension.lower() in [".gff", ".gff3"]:
 return tnseq_tools.get_gene_info_gff(path)
 else:
 return tnseq_tools.get_gene_info_pt(path)

[docs]def convertToIGV(self, dataset_list, annotationPath, path, normchoice=None):

 if not normchoice:
 normchoice = "nonorm"

 (fulldata, position) = tnseq_tools.get_data(dataset_list)
 (fulldata, factors) = norm_tools.normalize_data(fulldata, normchoice, dataset_list, annotationPath)
 position = position.astype(int)

 output = open(path, "w")
 output.write("#Converted to IGV with TRANSIT.\n")
 if normchoice != "nonorm":
 output.write("#Reads normalized using '%s'\n" % normchoice)

 output.write("#Files:\n#%s\n" % "\n#".join(dataset_list))
 output.write("#Chromosome\tStart\tEnd\tFeature\t%s\tTAs\n" % ("\t".join([transit_tools.fetch_name(D) for D in dataset_list])))
 chrom = transit_tools.fetch_name(annotationPath)

 for i,pos in enumerate(position):
 output.write("%s\t%s\t%s\tTA%s\t%s\t1\n" % (chrom, position[i], position[i]+1, position[i], "\t".join(["%1.1f" % fulldata[j][i] for j in range(len(fulldata))])))
 output.close()

[docs]def convertToCombinedWig(dataset_list, annotationPath, outputPath, normchoice="nonorm"):
 """Normalizes the input datasets and outputs the result in CombinedWig format.

 Arguments:
 dataset_list (list): List of paths to datasets in .wig format
 annotationPath (str): Path to annotation in .prot_table or GFF3 format.
 outputPath (str): Desired output path.
 normchoice (str): Choice for normalization method.

 """

 (fulldata, position) = tnseq_tools.get_data(dataset_list)
 (fulldata, factors) = norm_tools.normalize_data(fulldata, normchoice, dataset_list, annotationPath)
 position = position.astype(int)

 hash = get_pos_hash(annotationPath)
 rv2info = get_gene_info(annotationPath)

 output = open(outputPath, "w")
 output.write("#Converted to CombinedWig with TRANSIT.\n")
 if normchoice != "nonorm":
 output.write("#Reads normalized using '%s'\n" % normchoice)
 if type(factors[0]) == type(0.0):
 output.write("#Normalization Factors: %s\n" % "\t".join(["%s" % f for f in factors.flatten()]))
 else:
 output.write("#Normalization Factors: %s\n" % " ".join([",".join(["%s" % bx for bx in b]) for b in factors]))

 (K,N) = fulldata.shape
 output.write("#Files:\n")
 for f in dataset_list:
 output.write("#%s\n" % f)

 for i,pos in enumerate(position):
 #output.write("%-10d %s %s\n" % (position[i], "".join(["%7.1f" % c for c in fulldata[:,i]]),",".join(["%s (%s)" % (orf,rv2info.get(orf,["-"])[0]) for orf in hash.get(position[i], [])])))
 output.write("%d\t%s\t%s\n" % (position[i], "\t".join(["%1.1f" % c for c in fulldata[:,i]]),",".join(["%s (%s)" % (orf,rv2info.get(orf,["-"])[0]) for orf in hash.get(position[i], [])])))
 output.close()

[docs]def convertToGeneCountSummary(dataset_list, annotationPath, outputPath, normchoice="nonorm"):
 """Normalizes the input datasets and outputs the result in CombinedWig format.

 Arguments:
 dataset_list (list): List of paths to datasets in .wig format
 annotationPath (str): Path to annotation in .prot_table or GFF3 format.
 outputPath (str): Desired output path.
 normchoice (str): Choice for normalization method.

 """

 (fulldata, position) = tnseq_tools.get_data(dataset_list)
 (fulldata, factors) = norm_tools.normalize_data(fulldata, normchoice, dataset_list, annotationPath)
 output = open(outputPath, "w")
 output.write("#Summarized to Mean Gene Counts with TRANSIT.\n")
 if normchoice != "nonorm":
 output.write("#Reads normalized using '%s'\n" % normchoice)
 if type(factors[0]) == type(0.0):
 output.write("#Normalization Factors: %s\n" % "\t".join(["%s" % f for f in factors.flatten()]))
 else:
 output.write("#Normalization Factors: %s\n" % " ".join([",".join(["%s" % bx for bx in b]) for b in factors]))

 (K,N) = fulldata.shape
 output.write("#Files:\n")
 for f in dataset_list:
 output.write("#%s\n" % f)

 # Get Gene objects
 G = tnseq_tools.Genes(dataset_list, annotationPath, norm=normchoice)

 dataset_header = "\t".join([os.path.basename(D) for D in dataset_list])
 output.write("#Orf\tName\tNumber of TA sites\t%s\n" % dataset_header)
 for i,gene in enumerate(G):
 if gene.n > 0:
 data_str = "\t".join(["%1.2f" % (M) for M in numpy.mean(gene.reads, 1)])
 else:
 data_str = "\t".join(["%1.2f" % (Z) for Z in numpy.zeros(K)])
 output.write("%s\t%s\t%s\t%s\n" % (gene.orf, gene.name, gene.n, data_str))
 output.close()

[docs]def get_validated_data(wig_list, wxobj=None):
 """ Returns a tuple of (data, position) containing a matrix of raw read-counts
 , and list of coordinates.

 Arguments:
 wig_list (list): List of paths to wig files.
 wxobj (object): wxPython GUI object for warnings

 Returns:
 tuple: Two lists containing data and positions of the wig files given.

 :Example:

 >>> import pytransit.tnseq_tools as tnseq_tools
 >>> (data, position) = tnseq_tools.get_validated_data(["data/glycerol_H37Rv_rep1.wig", "data/glycerol_H37Rv_rep2.wig"])
 >>> print(data)
 array([[0., 0., 0., ..., 0., 0., 0.],
 [0., 0., 0., ..., 0., 0., 0.]])

 .. seealso:: :class:`get_file_types` :class:`combine_replicates` :class:`get_data_zero_fill` :class:`pytransit.norm_tools.normalize_data`
 """

 (status, genome) = validate_wig_format(wig_list, wxobj=wxobj)

 # Regular file with empty sites
 if status == 0:
 return tnseq_tools.get_data(wig_list)
 # No empty sites, decided to proceed as Himar1
 elif status == 1:
 return tnseq_tools.get_data_w_genome(wig_list, genome)
 # No empty sites, decided to proceed as Tn5
 elif status == 2:
 return tnseq_tools.get_data_zero_fill(wig_list)
 # Didn't choose either.... what!?
 else:
 return tnseq_tools.get_data([])

 _static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_images/QC_example.png
Histogram of Non-Zero Reads
Dataset: cholesterol_H37Rv_rep3.wig

0.025 -
0.020 -
£ 0,015 -
3
g
H
0.010 -
0.005 -
0,000 - Lp.,__,_f o
o 200 400 600 800
Reads

*Note: Plot 1 and 2 truncate the top 1% of reads for readabiliy.

Ineoretical Quantiles

Quality Control

QQ-Plot with Theoretical Geom
Dataset: cholesterol_H37Rv_rep3.wig

1200 - 3

1000 -

800 -

600 -

400 -

200 -

400 600 800

Data Quantiles

0 200 1000 1200

Selecting a normalization method from the drop down will normalize the data and refresh the figures and table.

“This may take a long time depending on the normalization method chosen.
Normalization: | nonorm +

il

Density

Mean Read

NZMean Read

NZMedianRead ~ MaxRead | TotalReads = Skew Kurtosis

cholesterol H37Rv_rep2.wig 239 530
cholesterol H37Rv_rep1 wig 39 529
glycerol H37Rv_rep2.wig 516 861
glycerol H37R.repl.wig) 539

1208
1205
1670
1288

460 217%0 3955041 1058 142162
560 47546 3949941 sa8 2377
890 s944 6426550 40 35
700 3855 4022204 40 330

Rank Reads
Dataset: cholesterol_H37Rv_rep3.wig
100000 -
80000 -
60000 -
40000 -
20000 -
0-
°
S

_images/TPP-screenshot.png
File
Choose a reference genome (FASTA) (REQUIRED):

1D names for each replicon:
(f genome has multple contigs)

Choose the Fast il for read 1 (REQUIRED):

Choose the Fast il for read 2:

Prefix to use for outpu filenames (REQUIRED):

Protocol used:

Transposon used:

Primer sequence:

Max reads (leave blank to use all):

Mismatches allowed in Tn prefix:

Start of window to look for prefix (Tn terminus):

BWA executable (REQUIRED):

BWA flags (Optional)

Barseq Catalog file: ‘ thi

sart | qut |
Dataset (*.n stats)
06/15/18] TnSeq Wi 803
06/15/18] TnSeq WiCO6
06/15/18] TnSeq Wi_C05
06/15/18] TnSeq Wil 801

TPP: Tn-Seq PreProcessor -+
H37Rvina /[sowe | @
TnSeq-Wil BO3 R fastq || Browe | @
TnSeq-Wil B03 R2fastq || Browe | @
emg] o
Sassetti)
Himart)
ACTTATCAGCCAACCTGTTA o
1 (]
020 o
. /owa-07.12/bwa || srowse | @ |usealgorithm mem v|@
s not a Barseq dataset | . || Browe | @
total reads Tprefix Rimapped R2_mapped e —— Tashit TN Nzmean
5502756 3274572 3068571 2639690 2636491 2444160 46127 0618 530
2532630 2376200 2319815 2155038 2134134 2015691 5621 0612 242
2668173 2507008 2445988 2280906 2259150 2146090 45631 0614 468
2459453 2324282 2277747 2086299 2073268 1968243 45375 0.608

a4 ()

_static/transit_logo.png
RANSIT

_images/genetic_interaction_types.png
Gene A

Whinviro Wimice Sech2KO-mitro

aggravating (ALFC=-4.1)

Sech2KOmice

Gene B

| —

Wr-invitro WT-mice SecA2-KO-invitro SecA2-KO-mice

alleviating (ALFC= +3.9)

Gene C

m W

W-invitro WI-mice SecA2-KO-invitro ~SecA2-KO-mice

suppressive (ALFC= +4.4)

_images/glyc_chol_corrplot.png
£dei At LeH osBIseloN
2dai" AU e 0sBIs0I0N

1deI"AuLeH Toselsalouo

2dei AHLEH 10480AIB ..
1dei AHLEH 10480416 . .

glycerol_H37RY_rept
glycerol_H37RY_rep2

1
2
3

cholesterol_H37Ry_re
cholesterol_H37Ry_re
cholesterol_H37Ry_re

_images/iron_corrplot_anova.png
HighFeMBT

LowFeMBT

FeCMBT

Hemin

Hemoglobin

HeminMBT

0°°000
000000 -

000000

000000 -

08

06

04

0z

02

o

05

08

nav.xhtml

 Table of Contents

 		
 Welcome to TRANSIT’s documentation!

 		
 TRANSIT Overview

 		
 Developers

 		
 References

 		
 Installation

 		
 Requirements

 		
 Python 2.7:

 		
 Python 3:

 		
 Additional Requirements: R (statistical analysis package)

 		
 Use as a Python Package

 		
 Optional: Install BWA to use with TPP pre-processor

 		
 Linux & OSX Instructions

 		
 Windows Instructions

 		
 Upgrading

 		
 Method 1: Upgrading package installation

 		
 Method 2: Upgrading source installation

 		
 Installing wxPython

 		
 Troubleshooting

 		
 1. No window appears when running in GUI mode.

 		
 2. pip: SystemError: Cannot compile ‘Python.h’.

 		
 3. pip: “The following required packages can not be built: freetype,png,” etc.

 		
 4. pip: “No lapack/blas resources found”

 		
 5. “resources.ContextualVersionConflict (six 1.5.2)…”

 		
 Running TRANSIT

 		
 GUI Mode

 		
 Command line Mode

 		
 Prot_tables (Annotations)

 		
 Tn5 Datasets

 		
 Quality Control

 		
 QC Metrics Table

 		
 QC Plots

 		
 Figure 1: Read-Count Distribution

 		
 Figure 2: QQ-Plot of Read-Counts vs Geometric Distribution

 		
 Figure 3: Ranked plot of Read-Counts

 		
 Interpretation of Data Quality

 		
 Beta-Geometric Correction

 		
 Analysis Methods

 		
 Gumbel

 		
 How does it work?

 		
 Example

 		
 Parameters

 		
 Outputs and diagnostics

 		
 Run-time

 		
 griffin

 		
 Tn5Gaps

 		
 How does it work?

 		
 Usage

 		
 Parameters

 		
 Example

 		
 Outputs and diagnostics

 		
 Run-time

 		
 HMM

 		
 How does it work?

 		
 Example

 		
 Parameters

 		
 Output and Diagnostics

 		
 Run-time

 		
 Resampling

 		
 How does it work?

 		
 Usage

 		
 Parameters

 		
 Notes

 		
 Doing resampling with a combined_wig file

 		
 Doing resampling with datasets from different libraries.

 		
 Doing resampling between different strains.

 		
 Output and Diagnostics

 		
 Run-time

 		
 Mann-Whitney U-test (utest)

 		
 Genetic Interactions

 		
 How does it work?

 		
 Statistical Significance

 		
 Usage

 		
 Example

 		
 Parameters

 		
 Output and Diagnostics

 		
 ANOVA

 		
 How does it work?

 		
 Example

 		
 Parameters

 		
 Output and Diagnostics

 		
 Run-time

 		
 ZINB

 		
 How does it work?

 		
 Example

 		
 Combined wig files

 		
 Samples Metadata File

 		
 Parameters

 		
 Covariates and Interactions

 		
 Categorical vs Numeric Covariates

 		
 Statistical Significance - What the P-values Mean in the ZINB Output

 		
 Output and Diagnostics

 		
 Run-time

 		
 Normalization

 		
 Command-line

 		
 Example

 		
 Pathway Enrichment Analysis

 		
 Usage

 		
 Parameters

 		
 Auxilliary Pathway Files in Transit Data Directory

 		
 Current Recommendations

 		
 Examples

 		
 tnseq_stats

 		
 corrplot

 		
 Usage:

 		
 heatmap

 		
 Usage:

 		
 Console Mode Cheat-Sheet

 		
 Analysis Methods

 		
 Single Condition Essentiality

 		
 Conditional Essentiality

 		
 Normalizing datasets

 		
 Positional Arguments

 		
 Optional Arguments

 		
 Tutorial: Genetic Interactions Analysis

 		
 Console Mode Tutorial

 		
 GUI Mode Tutorial

 		
 Run TRANSIT

 		
 Adding the annotation file

 		
 Adding datasets grown under condition A

 		
 Running the Genetic Interactions method

 		
 Viewing GI results

 		
 Tutorial: Normalize datasets

 		
 Adding the annotation file

 		
 Add .wig datasets

 		
 Normalize and Save

 		
 Normalization

 		
 Tutorial: Export datasets

 		
 Adding the annotation file

 		
 Add .wig datasets

 		
 Export to IGV

 		
 TPP Overview

 		
 Installation

 		
 Running TPP

 		
 Mapping to Genomes with Multiple Contigs

 		
 Overview of Data Processing Procedure

 		
 Statistics

 		
 transit package

 		
 Submodules

 		
 pytransit.norm_tools module

 		
 pytransit.stat_tools module

 		
 pytransit.tnseq_tools module

 		
 pytransit.transit_tools module

 		
 Module contents

_static/up.png

_images/transit_dataset_scatter_graph.png
Help

Organism

Annotation File:

[=1H37Rv.prot_table

Control Samples

Remove

[3[Click to add Control Dataset(s)]

File

‘Total Reads | Density

Mean Count | Max Count | Full Path

glycerol_H37Rv_repl.wig 4022244.0 Figure
iglycerol_H37RV_rep2.wig 6426550.0
Scatter plot - Reads at TA sites
6000 -
5000
[
- .
Experimental Samples & 4000 .
Remove g
- nog . .
File Total Reads £ 3000 Leen
B
g coo
s
3 2000
1000
-
[
ResultsFiles ———————————— % 500 1000 1500 2000 2500 3000 3500 4000
Display Table| [=1Add Results File glycerol H37Rv_repl
=~
Name Ol0|+| &
[I 0]

/RANSIT

v2.0.0
Instructions

1. Choose the annotation file (*prot
table") that corresponds to the
datasets to be analyzed.

2. Add the desired Control and
Experimental datasets.

3. (Optional) If you wish to visualize
their read counts, select the desired
datasets and click on the "View"
button.

4. Select the desired analysis method
from the dropdown menu on the
top-right of the window, and follow its.
instructions.

_images/transit_dataset_track_view.png
File View Analysis Help

Organism

Annotation File:

Control Samples

Remove

[=1H37Rv.prot_table

[3[Click to add Control Dataset(s)]

/RANSHT

v2.0.0
Instructions

File Total Reads | Density Mean Count | Max Count | Full Path 1. Choose the annotation file ("prot
") that corresponds to the.
~15 to be analyzed.
‘B Jeash View, the desired Control and
nental datasets.
jonal) If you wish to visualize
ad counts, select the desired
glycerol_H37Rv_repl 55 and click on the "View"
Il I £t the desired analysis method
T | y e dropdown menu on the
| 150 jit of the window, and follow its
Exper ons.
e Glycerol H37Rv_rep2 | | “ 75
e I | | Iy " o
ile .
— TAsites 11 (1 R
Genes 3 1 /7
dnaA dnaN recF gyrB gyrA
Canvas Position- Scale-
L] update | saveimg < > Search: Search Min Read [0
Resull
Reset Add Feature(| Zoom Out [Zoomn | |10000 Normalize Data Max Read [150
Displ
Name Type Date Full Path

_images/iron_heatmap_anova_rotated.png
Rv1845c/-
Rv2123/PPE37
Rv2358/-

Rv2359/furB.
Rv1592c/-
Rv3662c/-
Rv0338c/-
Rv3676/-
Rv3645/-
Rv1432/-
Rv26760/-
Rv0509/hemA
Rv0510/hemC

Rv2047c)-

Rv0676c/mmpLS

Rv0677c/mmpS5

Rv2678c/hemE

Rv1338/murl

Rv1348-

Rv0455¢/-

Rv2907c/imM

r Rv2210c/ivE

r Rv0289/-

Rv1300/emK

Rv3477/PE31

r Rv2970A)-

Rv0284/-

Rv0282/-

Rv0290/-

Rv2764c/thyA

Rv2583c/relA

Rv2241/aceE

Rv0758/phoR

[Rv0462/ipd
Rv0526/-

— Rv0291/mycP3

Rv3052c/nrdl

- Rv1085c/-

lr Rv2988c/leuC
Rv2995c/leuB

r Rv3802c/-

r Rv3283/sseA

Rv3410c/guaB3
[| Rv3543c/fadE29
r Ru3551/-
Rv3544clfadE28
- Rv1636/7B15.3
Ru3540c/tp2
Rv3542c/-
Rv3029c/fixA
Rv0467/icl
Rv0534cimenA
Rv2697c/dut
Rv2842c/-
4 Rv3274clfadE2s
Rv1828/-
Rv3028c/fixB.
r Rv0489/gpm 1
- Rv0270/fadD2
| Rv3139/fadE24
RV0BIB/gHA
Rv3140/fadE23
r Rv3859c/ghB
L Rv3774/echA21
Ru3775/lpE
r Rv1436/gap
Rv3031/-
Rv3220c/-
Rv1626/-
F Rv2130c/cysS
Ru1565c/-
Rv0542cimenE
Rv034Gc/ansP2
Rv2684/arsA
i Rv1798-
Rv1194c/-
Rv1708-
Rv2221c/ginE
Rv0358/-
Rv2941/fadD28
Rv2710/sigB
Ru1248c/kgd
Rv2932/ppsB
Rv0486/-
Rv2934/ppsD
Rv2935/ppsE
Rv2940c/mas
Rv2931/ppsA
Rv2933/ppsC
| Rv0286/PPE4
Rv2677cihemY
Rv1339/-
Rv0512/hemB
Rv1485/hemH
I Rviogs-
- Rv2048c/pks12
Rv2179c/-
Rv3215/entC
Ru1127c/ppdk
Rv1349/-
Rv0202c/mmpL11
R1540/-
Rv3670/ephE
Rv2470/gb0
Ru1126c-
Rv1208-
Rv2400c/subl
Rv2397c/cysAt
r Rv2246/kasB
Rv0818/-
RV0S63/htpX

Dalaac

1 T =T e]

Rv0007/-
Rv1410c/-
t Rv3057c)-
Rv1312/-
Rv1821/secA2
Rv1340/ph
Rv3723/-
Rv3496cimeedD
Rv1387/PPE20
Rv3804c/fbpA
Rv2799/-
Rv3499cimeedA
r Rv0736/-
r Rv2198c/mmpS3
Rv0504c/-
Rv0929/pstC2
r Rv2754c/thyX
Rv0928/pstS3
Rv0930/pstA
H Rv0820/phoT
— Rv3044/fecB
- Rv3035/-
Rv1013/pks16
Rv3612c)-
| Ru2110c/prcB
T Rv2553c/-
RV0558/ubiE
Rv3778c)-
Rv0410c/pknG
Rv0412c/-
Ru3490/otsA
Rv1925/fadD31
Rv2115c/-
Rv3208ATTBY.4
Rv0153c/ptbB
Rv0949/uviD1
Rv3667/acs
Rv1006/-
Rv1640clysS
Rv3494cimcedF
Rv1683/-
Rv0066cficd?
Rv1337/-
r Ru1566c/-
Rv3682/ponA2
Rv3193c/-
Rv1072/-
Rv3593/lpaF
Rv001 7clrodA
Rv2511/om
r | Rv0642c/mmaA4
I3 Rv0384c/cipB
Rv3267/-
1. Rv0524/hemL.
r Rv2507/-
Rv2455¢/-
- Rv2454c/-
T Rv2476clgdh
Rv0023/-
Rv0280/PPE3
Rv1832/gcvB
Rv221 fclgevT
Rv1826/gcvH
- Rv0238/-
s Ru1411clprG
Rv2202c/cbhK
Rv2587c/secD
Rv0211/pckA
Rv3495c/iprN
Rv3497cimcedC

HeminMBT
LowFeMBT
HighFeMBT
FeCMBT
Hemin
Hemoglobin

_images/transit_quality_control_histogram.png
Histogram of Non-Zero Reads

Dataset: glycerol_H37Rv_rep2.wi
0.012 ' gy T V-TEP2 g

0.010 i N -
0.008 B B -
0.006 B B -
0.004 i N -

0.002

0.000 o
0 200 400 600 800 1000 1200

Reads

_images/transit_quality_control_qqplot.png
FIIEVTELIRE Ad =S

QQ-Plot with Theoretical Geom

1800 -
1600 -
1400 -
1200 -
1000 -
800 -
600 -
400 -

200 -

0 i
0 200 &

Dataset: glycerol_H37Rv_rep2.wig

00 600 800 10001200140016001800
Data Quantiles

_images/transit_export_options.png
View Analysis _Help

TRANSIT

to Combined Wig

| table

[3[Click to add Control Dataset(s)]

glycerol_H37Rv_repl.wig
glycerol_H37RV_rep2.wig

‘Total Reads | Density
40222440 419 53.9
64265500 51.6 6.1

Mean Count | Max Count | Full Path
3855 Jpacific/home/mdejesus/transi
5944 jpacific/hom

rcfransit/data
rcfransit/data

imdejests/iransi

[

Experimental Samples

[5[Click to add Experimental Dataset(s)]

‘Total Reads | Density

Mean Count | Max Count | Full Path

/RANSIT

v2.0.0

resampling

Method for determining conditional
essentiality based on resampling (i.e.
permutation test). Identifies
significant changes in mean
read-counts for each gene after
nomalization.

Method Options.
Global Options
Ignore N-Terminus %: [o

Ignore C-Terminus %: [

resampling Options.

cholesterol H37Rv_replwig 39499410 439 529 47546 Jpacific/home/mdejesus/transit/src/transit/data/cholesterol

cholesterol_H37Rv_rep2.wig ~ 3955041.0 43. 53.0 217960 Jpacifichome/mdejesus transit/src/transit/data/cholesterol| Samples 10000

cholesterol H37Rv_rep3.wig 45260810 35.9 60.7 162013 jpacificj/nomejmdejesus/transitjsrc/transitjdatajcholesterol Nomalization 7R s
[Adaptive Resampling (Faster)
[Generate Resampling Histograms
[Include sites with all zeros.

(KT} .| mnnsampling|

Results Files

Display Table| ~ [-1Add Results File | [Choose Action] e

Name Type Date Full Path

ling_results_glyc_chol

|gumbel_glycerol_reads_rep1_s10000_b500_t1.dat Gumbel

HMM - Sites.

May 03, 2016 09:08AM
May 03, 2016 09:09AM
03,2016 (

Jpacific/home/mdejesus ransit/src/tran
Jpacific/home/mdejesus ransit/srcjtran

_images/transit_interface.png
File View Analysis Help

TRANSIT

Organism
Annotation File:

Control Samples

Remove

[=1H37Rv.prot_table

[3[Click to add Control Dataset(s)]

Display Table| ~ [Z1Add Results File ~ [Choose Action] v

File Total Reads | Density Mean Count | Max Count | Full Path
< 0]
Experimental Samples-
Remove [5[Click to add Experimental Dataset(s)]
File Total Reads | Density Mean Count | Max Count | Full Path
< 0]
Results Files.

Name

Type Date

Full Path

Welcome to TRANSIT

RANSIT

v2.0.0
Instructions

1. Choose the annotation file (*prot
table") that corresponds to the
datasets to be analyzed.

2. Add the desired Control and
Experimental datasets.

3. (Optional) If you wish to visualize
their read counts, select the desired
datasets and click on the "View"
button.

4. Select the desired analysis method
from the dropdown menu on the
top-right of the window, and follow its.
instructions.

_images/transit_quality_control_ranked.png
Rank Reads

6000 Da‘tase$: gly‘cerol‘_H37‘Rv_r:ep2.VVV|%

5000 - i TR S

4000 -

3000 -

2000 -

1000 -

0 i il
0 1000@0000B00004000(B0000600007000080000
Reads

_static/up-pressed.png

_images/transit_quality_control_window.png
X Quality Control

Histogram of Non-Zero Reads

0.012

0.010

0.008

0.006

0.004

0.002

0.000
0

Reads

*Note: Plot 1 and 2 runcate the top 1% of reads for readabiity.

200 400 600 800

Dataset: glycerol_H37Rv_rep2.wig
v I 7) i

1000

InevieuLal wuaiiies

1200

QQ-Plot with Theoretical Geom

1800 -
1600 -
1400 -
1200 -
1000 -
800 -
600 -
400 -

200 -

0 i
0 200 &

Dataset: glyce
I

rol_H37Rv_rep2.wig
i

0 0

00 600 800 10001200140016001800

Data Quantiles

- o
Rank Reads
Dataset: glycerol_H37Rv_rep2.wi
6000 79 SHATRYIER2ANG
5000 - : i [
.
4000 - o
3000 - -
2000 - -
1000 - -

0 i il
0 1000@0000B00004000(B0000600007000080000
Reads

Fie Density

Mesn Resd

NzMean Resd

NMedian Read

Max Read

Total Reads

Sken

Kurtosis

pLwia)

525

1258

700

55

022244

=

_images/transit_resampling_histogram_graph.png
File View Analysis Help

Organism

Annotation File: [=5[Click to add Annotation File (.prot_table)] 2; RAN E

Control Samples

I v2.0.0
Remove - Ipacific/home/mdejesus/transit/resampling_results/Rv0017c.png - + Xfons—
File hoose the annotation file
- Hi £") that corresponds to tf
Rv0917c H|§Eogram ‘of Delta §um Ex cicaraized

td the desired Control ar
srimental datasets.

Information-
Results:
Conditionally - Esse

e — | More Essential in
Less Essential in

Experimer

Remove orf
— RV0017C

File RV0391

RV0578c

Probability

RV0872 0.02

Rv1028c -0.04

215 0.026
212 0.000
279 0.010:

RV2569¢

a3azales

Rv2942
R7 |Rv3563

[

Results Files

Display Table| [SAdd Results

-1000 -500 0 500 1500 2000
= Delta Sum

[I 0]

Welcome to TRANSIT

_images/transit_tutorial_control_datasets.png
> TRANSIT -+ x
File View Analysis Help

Organism

Annotation File: [S1H37Rv.prot_table Z’/ N g "'T'
v2.0.0

-

R 1. Choose the amotaton e (prot
glycerol_H37Rv_repl.wig 40222440 419 3855 Ipacific/home/mdejesus/transit/src/transit/data/glycerol_H. ;"'e') ""ﬂ; g:"?—sl;ﬂ":; tothe
giycerol H37Rv_rep2wig 64265500 516 5544 Jpacificihomemdejesusfiransitisrc/ransitidatajglycerol R e

Experimental datasets.
3. (Optional) If you wish to visualize
their read counts, select the desired
datasets and click on the "View"
button.
4. Select the desired analysis method
[T3 from the dropdown menu on the
top-right of the window, and follow its.
Experimental Samples instructions.
Remove [5[Click to add Experimental Dataset(s)]
File Total Reads | Density Mean Count | Max Count | Full Path
[I}
Results Files
Display Table| [SAdd Results File | [Choose Action]
Name Type Date Full Path
[I 0]

_images/transit_tutorial_gi_control_A.png
TRANSIT

()Arn?:‘;':;anﬁ : & H37Rv.prot_table 2; NEHT

Control Samples
v2.2.0

Remove [Click to add Control Dataset(s)]

Instructions.

Total Reads Density Mean Count Max Count Full Path

1. Choose the annotation file ("prot
table") that corresponds to the
datasets to be analyzed.

2. Add the desired Control and
Experimental datasets.

3. (Optional) IF you wish to visualize
their read counts, select the desired
datasets and click on the "View"
button.

4. Select the desired analysis method
from the dropdown menu on the
top-right of the window, and Follow

Experimental Samples its instructions.
Remove (Click to add Experimental Dataset(s)]
File TotalReads Density ~ Mean Count Max Count ~Full Path
Results Files

DisplayTable | [@Add ResultsFile | [Choose Action] v

Name Type Date Full Path

_images/transit_result_volcano_graph.png
File View Analysis

Help

Organism
Annotation File:

[=1H37Rv.prot_table

Control Samples

Remove [5Click to add Control Dataset(s)]
File “Total Reads | Density Mean Count | Max Count | Full Path
glycerol_H37Rv_repl.wig 40222440 419 53.9 3855 Jpacifichome/mdejesus transit/src/transit/data/glycerol_H:
glycerol_H37Rv_rep2.wig 6426550.0 51.6 86.1 5944 Jpacifichome/mdejesus transit/srcitransit/data/glycerol_H:
- Figure 1 -+ x
25 Resampling - Volcano plot
[T — - e —
Experimental Sampl 2.0] .o .
Remove
3 .
g
215 ot
cholesterol_H37Rv. 2 sit/data/cholesterol
cholesterol_H37Ry g sit/data/cholesterol
T 2nsit/data/cholesterol
§ 1.0
05
{1 | —
Results Files
Display Table| [-
=15 -10 -5 0 5 10 15
ot Log Fold Change (base 2)
Ejesus/transit2.0/src/t

e 13 ©| O+ &7)

/RANSIT

v2.0.0
Instructions

1. Choose the annotation file ("prot
table”) that corresponds to the
datasets to be analyzed.

2. Add the desired Control and
Experimental datasets.

3. (Optional) If you wish to visualize
their read counts, select the desired
datasets and click on the "View"
button.

4. Select the desired analysis method
from the dropdown menu on the
top-right of the window, and follow its.
instructions.

_images/transit_tutorial_annotation.png
M TRANSIT -+
File View Analysis Help

Organism

N
TERNE

Control Samples! v2.0.0

Remove [5Click to add Control Dataset(s)] Instructions. ‘
File Total Reads | Density Mean Count | Max Count | Full Path 1. Choose the annotation file ("prot
table”) that corresponds to the
datasets to be analyzed.

2. Add the desired Control and

Experimental datasets.

3. (Optional) If you wish to visualize

their read counts, select the desired

datasets and click on the "View"

button.

4. Select the desired analysis method
ol from the dropdown menu on the

top-right of the window, and follow its.

instructions.

Experimental Samples-
Remove [5[Click to add Experimental Dataset(s)]

File Total Reads | Density | Mean Count | Max Count | Full Path

< IR0
Results Files

Display Table| [=1Add Results File ~ [Choose Action]| v

Name Type Date Full Path

Welcome to TRANSIT

_images/transit_tutorial_gi_experimental_B.png
TRANSIT

Organism
Annotation File: [H37Rv.prot_table 2; Ng"?
Control samples:
—_— v2.2.0
liczoee | Please select files for the second condition. B actions
File

for determining genetic

ons based on changes in

nt (ie. delta log Fold-change
ead counts).

‘The Genetic Interactions method requires a total of four sets of datasets. Typically these are 2 strain backgrounds
(e.g. wildtype and Knockout) each grown under two conditions (e.g. invitro and in vivo, or rich-media and presence of
antibiotic).

jis method requires 4 groups

The Control and Experimental datasets added in the main TRANSIT interface are assumed to be the two strain ts. Use the main interface

backgrounds grown under the first condition. This interface allows you to add the remaining datasets for the second
condition.

. Awindow willallow you to

datasets under the second
icontrol samples - Condition B

Remove [[Click to add Control Dataset(s)]
Experimental Samples T

File TotalReads Density ~ Mean Count Max Count Full Path

H37Rv_day32._rep3.wig 30179720 332 405 91766 /pacific/home/mdejesus/transit/tests
H37Rv_day32_rep2.wig 3970806.0 29.8 532 19863 /pacific/home/mdejesus/transit/tests _
H37Rv_day32_rep1.wig 7527150 22.9 10.1 3617 Jpacific/home/mdejesus/transit/testsf ek <l

10

jons

RV2680_

RV2680_

[Experimental Samples - Condition B

Remove

ion; TTR ~|@

Rv2680_day32_rep3.wi 1800913.0 34.0 241 20535 acific/home/mdejesus/transit/tests,
esults Files— S R e el for Genome Positional Bias@
GO Ll [Rvasso_dayaz rep2wig 894862.0 2.7 120 10868 /pacific/home/mdejesus/transit/tests] L
e Rv2680_day32_rep1.wig 2598055.0 27.3 34.8 19506 /pacific/home/mdejesus/transit/testsf Ll o= i)

Name sites with all zeros@

[Runa |

Progress

[ail Y

_images/transit_tutorial_gi_method.png
TRANSIT

Annotatiof B EIVEGI ZZ NEHT

Control samples

v2.2.0
Remove
B Genetic Interactions-
Method for determining genetic
— | interactions based on changes in
PEFRLGET i iy enrichment (i.e. delta log fold-change:
H37Rv_day0_rep1.wig 11741900 438 ISIC/Ce in mean read counts).

File

NOTE: This method requires 4 groups
of datasets. Use the main interface
to add datasets for the two strain
backgrounds under the first
condition. Awindow willallow you to
add the datasets under the second

condition.
Experimental Samples Intended for himarl or tn5
Remove lick to add Experimental Dataset(s)]
File Total Reads Density ~ Mean Count Max Count Full Path RaathoiOpHbne
Global Options.
Ignore N-Terminus %:(0 IC)
Ignore C-Terminus %:(0)
Gl Options
samples: [10000 o
Normalization] TTR ~ 0
Fleis Correct for Genome Positional Bias@
DisplayTable | [@Add ResultsFile | [Choose Action] v Preview LOESS fit

Name Type Date Full Path Include sites with all zeros@

RunGl

Progress

_images/transit_tutorial_gi_control_B.png
TRANSIT

F

e S HTRuprot table - IBRANSIT 2

Control samples
v2.2.0

| Remove
[J Please select files for the second condition. eractions

for determining genetic
ons based on changes in
‘The Genetic Interactions method requires a total of four sets of datasets. Typically these are 2 strain backgrounds I (i.e. delta log Fold-change
(e.g. wildtype and Knockout) each grown under two conditions (e.g. invitro and in vivo, or rich-media and presence of Jitead counts):
antibiotic).

File

is method requires 4 groups
The Control and Experimental datasets added in the main TRANSIT interface are assumed to be the two strain ts. Use the main interface
backgrounds grown under the first condition. This interface allows you to add the remaining datasets for the second
condition.

. Awindow willallow you to
latasets under the second

icontrol samples - Condition B .

Remove
Experimental Samples ded for himarl or tn5.

Total Reads Density __ Mean Count Max Count FullPat
H37Rv_day32_rep3.wig 30179720 33.2 40.5 91766 /pacific/home/mdejesus/transit/tests,
H37Rv_day32_rep2.wig 3970806.0 29.8 532 19863 /pacific/home/mdejesus/transit/tests,
H37Rv_day32_rep1.wig 7527150 22.9 10.1 3617 /pacific/home/mdejesus/transit/tests,

[Remove |

File
Global Options

erminus %:| 0 o
Ferminus %:| 0 o

Gl Options

680_day0_rep2.wig :

[Experimental Samples - Condition B
Remove [[Click to add Experimental Dataset(s)]

Mean Count Max Count Full Path

File Total Reads Density ion; TR -0

gesu\ts Files ‘ for Genome Positional Bias@
| Display Table| [@Add Results Preview LOESS it |

Name sites with all zeros@

[Runa |

Progress

—

[ai]

_images/transit_tutorial_gi_experimental_A.png
TRANSIT

Organism
Annotation File: [iH37Rv.prot_table
Control Samples
Remove [[Click to add Control Dataset(s)]
File TotalReads Density ~ Mean Count Max Count ~Full Path

1703655.0 45.1
1174196.0 43.8

H37Rv_day0_rep2.wig

/pacific/home/mdejesus/transit/tests/GI/H37Rv_dayo_re]

H37Rv_dayo_rep1.wig /pacific/home/mdejesus/transit/tests/GI/H37Rv_dayo_re]

Experimental Samples

TotalReads Density ~ Mean Count Max Count Full Path

617 /pacific/home/mdejesus/transit/tests/GI/Rv2680_dayo_
5105 /pacific/home/mdejesus/transit/tests/Gl/Rv2

Results Files

DisplayTable | [@Add ResultsFile | [Choose Action] v

Name Type Date Full Path

ZBANSIT

v2.2.0

Instructions.

1. Choose the annotation file ("prot
table") that corresponds to the
datasets to be analyzed.

2. Add the desired Control and
Experimental datasets.

3. (Optional) IF you wish to visualize
their read counts, select the desired
datasets and click on the "View"
button.

4. Select the desired analysis method
from the dropdown menu on the
top-right of the window, and Follow
its instructions.

_images/transit_tutorial_norm_options.png
File View Analysis Help

Organism

Annotation File: [5H37R.prot table
Control samples

[[Click to add Control Dataset(s)]

File TotalReads Density MeanCount Max Count Full Path
/rep2.wig 642 5 3 ftitan/home/mdejesus/dev/transit
/rep1.wig 40222440 fitan/home/mdejests

/ merged.w 10448794.0 ftitan/home/

v Normalization Choice. + x

Choose how to normalize read-counts accross datasets.

S

{S(Click to add Experimental Dataset(s)] aBGC

betageom
File TotalReads Density Mean Cou

2 emphist -
nonorm
nzmean
quantile

totreads

sinfoh

e | coadd pecuk< File | | IChoose Actiond | ~

ZBANSIT

v2.1.0

Instructions

1. Choose the annotation file (‘prot
table") that corresponds to the datasets
to be analyzed.

2. Add the desired Control and
Experimental datasets.

3. (Optional) Ifyou wish to visualize their
read counts, select the desired datasets,
and click on the "View” button.

4. Select the desired analysis method
from the dropdown menu on the
top-right of the window, and followits
instructions.

_static/comment-bright.png

_static/ajax-loader.gif

